Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides

Yanlin Li , Bo Wang , Lei Zhu , Yixing Yuan , Lujun Chen , Jun Ma

Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 68

PDF (1055KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 68 DOI: 10.1007/s11783-021-1502-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides

Author information +
History +
PDF (1055KB)

Abstract

• LDHs and MMOs was synthesized by ultrasound-assisted one-step co-precipitation.

• MMOs performs the best for Cr(VI) and E. coliNDM-1 simultaneous removal.

• Possible antibacterial pathways of Cr-MMOs were proposed.

Herein we provide a novel high-efficiency nanocomposite for bacterial capture based on mixed metal oxides (MMOs) with deleterious chromium properties. With both the layer structure of layered double hydroxides (LDHs) and the magnetic properties of Fe, MMOs enrich the location of ionic forms on the surface, providing a good carrier for adsorption of the heavy metal Cr(VI). The capacity for adsorption of Cr(VI) by MMOs can be as high as 98.80 mg/g. The prepared Cr(VI)-MMOs achieved extremely expeditious location of gram-negative antibiotic-resistant E. coliNDM-1 by identifying lipid bilayers. Cr-MMOs with a Cr loading of 19.70 mg/g had the best bactericidal effect, and the concentration of E. coliNDM-1 was decreased from ~108 to ~103 CFU/mL after 30 min of reaction. The binding of nitrogen and phosphorus hydrophilic groups to chromate generated realistic models for density functional theory (DFT) calculations. The specific selectivity of MMOs toward bacterial cells was improved by taking Cr(VI) as a transferable medium, thereby enhancing the antibacterial activity of Cr-MMOs. Under the combined action of chemical and physical reactions, Cr(VI)-MMOs achieved high capacity for inactivation of bacteria. Moreover, the metallic elements ratio in Cr-MMOs remained stable in their initial valence states after inactivation. This guaranteed high removal efficiency for both heavy metals and bacteria, allowing recycling of the adsorbent in practical applications.

Graphical abstract

Keywords

Heavy metal adsorption / Magnetic hydrotalcite / ARBs removal / Cr(VI)-MMOs combined antibacterial activity

Cite this article

Download citation ▾
Yanlin Li, Bo Wang, Lei Zhu, Yixing Yuan, Lujun Chen, Jun Ma. Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides. Front. Environ. Sci. Eng., 2022, 16(6): 68 DOI:10.1007/s11783-021-1502-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agostinelli E, Battistoni C, Fiorani D, Mattogno G, Nogues M (1989). An XPS study of the electronic structure of the ZnxCd1− xCr2 (x= S, Se) spinel system. Journal of Physics and Chemistry of Solids, 50(3): 269–272 doi:10.1016/0022-3697(89)90487-3

[2]

Ai Z, Cheng Y, Zhang L, Qiu J (2008). Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires. Environmental Science & Technology, 42(18): 6955–6960

[3]

Barrera-Díaz C E, Lugo-Lugo V, Bilyeu B (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials, 223 224: 1–12

[4]

Blasse G (1965). Magnetic properties of mixed metal oxides containing trivalent cobalt. Journal of Applied Physics, 36(3): 879–883

[5]

Cavani F, Trifirò F, Vaccari A (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11: 176–179

[6]

Chatterjee A, Bharadiya P, Hansora D (2019). Layered double hydroxide based bionanocomposites. Applied Clay Science, 177: 19–36

[7]

Chen C W, Hsu C Y, Lai S M, Syu W J, Wang T Y, Lai P S (2014). Metal nanobullets for multidrug resistant bacteria and biofilms. Advanced Drug Delivery Reviews, 78: 88–104

[8]

Cheung K H, Gu J D (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. International Biodeterioration & Biodegradation, 59(1): 8–15

[9]

Deng S, Bai R (2004). Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: Performance and mechanisms. Water Research, 38(9): 2424–2431

[10]

Desimoni E, Malitesta C, Zambonin P, Riviere J (1988). An X-ray photoelectron spectroscopic study of some chromium-oxygen systems. Surface and Interface Analysis, 13(2–3): 173–179

[11]

Dhanalakshmi A, Palanimurugan A, Natarajan B (2017). Enhanced antibacterial effect using carbohydrates biotemplate of ZnO nano thin films. Carbohydrate Polymers, 168: 191–200

[12]

Ding Q, Chen S, Shang F, Liang J, Liu C (2016). Cu2O/Ag co-deposited TiO2 nanotube array film prepared by pulse-reversing voltage and photocatalytic properties. Nanotechnology, 27(48): 485705

[13]

Fein J B (2006). Thermodynamic modeling of metal adsorption onto bacterial cell walls: current challenges. Advances in Agronomy, 90: 179–202

[14]

Feng M, Yin H, Peng H, Liu Z, Lu G, Dang Z (2017). Hexavalent chromium induced oxidative stress and apoptosis in Pycnoporus sanguineus. Environmental Pollution, 228: 128–139

[15]

Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018). Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environmental Pollution, 240: 493–505

[16]

Ho Y S, Mckay G (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5): 451–465

[17]

Hou X, Mao D, Ma H, Ai Y, Zhao X, Deng J, Li D, Liao B (2015). Antibacterial ability of Ag-TiO2 nanotubes prepared by ion implantation and anodic oxidation. Materials Letters, 161(DEC.15): 309–312

[18]

Hu H, Liu J, Xu Z, Zhang L, Cheng B, Ho W (2019). Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. Applied Surface Science, 478: 981–990

[19]

Hu H W, Wang J T, Li J, Shi X Z, Ma Y B, Chen D, He J Z (2017). Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils. Environmental Science & Technology, 51(2): 790–800

[20]

Huang H, Chen Y, Yang S, Zheng X (2019). CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: possible role of stimulated signal transduction. Environmental Science. Nano, 6(2): 528–539

[21]

Inglezakis V J, Loizidou M D, Grigoropoulou H P (2002). Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Research, 36(11): 2784–2792

[22]

Jiménez-Cedillo M J, Olguín M T, Fall Ch (2009). Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron-manganese-modified clinoptilolite-rich tuffs. Journal of Hazardous Materials, 163(2–3): 939–945

[23]

Kang S, Herzberg M, Rodrigues D F, Elimelech M (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13): 6409–6413

[24]

Kensche A, Holder C, Basche S, Tahan N, Hannig C, Hannig M (2017). Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Archives of Oral Biology, 80: 18–26

[25]

Lazaridis N K, Asouhidou D D (2003). Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Water Research, 37(12): 2875–2882

[26]

Li Y, Gao B, Wu T, Sun D, Li X, Wang B, Lu F (2009). Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Research, 43(12): 3067–3075

[27]

Liu J Y, Duan C, Zhou J Z, Li X L, Qian G R, Xu Z P (2013a). Adsorption of bacteria onto layered double hydroxide particles to form biogranule-like aggregates. Applied Clay Science, 75–76: 39–45

[28]

Liu Z, Li W, Wang J, Pan J, Sun S, Yu Y, Zhao B, Ma Y, Zhang T, Qi J, Liu G, Lu F (2013b). Identification and characterization of the first Escherichia coli strain carrying NDM-1 gene in China. PLoS One, 8(6): e66666

[29]

Nguyen C C, Hugie C N, Kile M L, Navab-Daneshmand T (2019). Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Frontiers of Environmental Science & Engineering, 13(3): 46

[30]

Ruthven D M (1984). Principles of Adsorption and Adsorption Processes. Fredericton, New Brunswick: John Wiley & Sons, 29–84

[31]

Sansuk S, Nanan S, Srijaranai S (2015). New eco-friendly extraction of anionic analytes based on formation of layered double hydroxides. Green Chemistry, 17(7): 3837–3843

[32]

Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi N K, Dumat C, Rashid M I (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178: 513–533

[33]

Slavin Y N, Asnis J, Häfeli U O, Bach H (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15(1): 65

[34]

Smith S C, Rodrigues D F (2015). Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon, 91: 122–143

[35]

Song J, Zhang F, Huang Y, Keller A A, Tang X, Zhang W, Jia W, Santos J (2018). Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environmental Science. Nano, 5(6): 1255–1520

[36]

Su H C, Liu Y S, Pan C G, Chen J, He L Y, Ying G G (2018). Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. Science of the Total Environment, 616 617: 453–461

[37]

Sun X, Yan Y, Li J, Han W, Wang L (2014). SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity. Journal of Hazardous Materials, 266: 26–33

[38]

Sun X F, Ma Y, Liu X W, Wang S G, Gao B Y, Li X M (2010). Sorption and detoxification of chromium(VI) by aerobic granules functionalized with polyethylenimine. Water Research, 44(8): 2517–2524

[39]

Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle H P, Walter E (2001). Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? Journal of Controlled Release, 76(1–2): 59–71

[40]

Türgay O, Ersöz G, Atalay S, Forss J, Welander U (2011). The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 79(1): 26–33

[41]

Wan K, Lin W F, Zhu S, Zhang S H, Yu X (2020). Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis. Frontiers of Environmental Science & Engineering, 14(1): 10

[42]

Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X (2019). Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environmental Pollution, 246: 608–620

[43]

Xu J, Xu Y, Wang H, Guo C, Qiu H, He Y, Zhang Y, Li X, Meng W (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119: 1379–1385

[44]

Yao K, Dong Y Y, Bian J, Ma M G, Li J F (2015). Understanding the mechanism of ultrasound on the synthesis of cellulose/Cu(OH)2/CuO hybrids. Ultrasonics Sonochemistry, 24: 27–35

[45]

Yao W, Wang J, Wang P, Wang X, Yu S, Zou Y, Hou J, Hayat T, Alsaedi A, Wang X (2017). Synergistic coagulation of GO and secondary adsorption of heavy metal ions on Ca/Al layered double hydroxides. Environmental Pollution, 229: 827–836

[46]

Yasuyuki M, Kunihiro K, Kurissery S, Kanavillil N, Sato Y, Kikuchi Y (2010). Antibacterial properties of nine pure metals: A laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling, 26(7): 851–858

[47]

Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G (2021). Antibacterial metals and alloys for potential biomedical implants. Bioactive Materials, 6(8): 2569–2612

[48]

Zhang L, Niu C G, Wen X J, Guo H, Zhao X F, Huang D W, Zeng G M (2018). A facile strategy to fabricate hollow cadmium sulfide nanospheres with nanoparticles-textured surface for hexavalent chromium reduction and bacterial inactivation. Journal of Colloid and Interface Science, 514: 396–406

[49]

Zhang X, Yan L, Li J, Yu H (2020). Adsorption of heavy metals by l-cysteine intercalated layered double hydroxide: Kinetic, isothermal and mechanistic studies. Journal of Colloid and Interface Science, 562: 149–158

[50]

Zhao Q C, Ren L, Zhou H O, Cao T, Chen P (2014). Enhanced adsorption of Pb(II) by Al(OH)3/(PAA-CO-PAM) sub-microspheres with three-dimensional interpenetrating network structure. Chemical Engineering Journal, 250: 6–13

[51]

Zou X, Zhang L, Wang Z, Luo Y (2016). Mechanisms of the antimicrobial activities of graphene materials. Journal of the American Chemical Society, 138(7): 2064–2077

[52]

Zubair M, Daud M, Mckay G, Shehzad F, Al-Harthi M A (2017). Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Applied Clay Science, 143: 279–292

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1055KB)

Supplementary files

FSE-21066-of-LYL_suppl_1

3113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/