Advances in airborne microorganisms detection using biosensors: A critical review

Jinbiao Ma, Manman Du, Can Wang, Xinwu Xie, Hao Wang, Qian Zhang

PDF(1180 KB)
PDF(1180 KB)
Front. Environ. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (3) : 47. DOI: 10.1007/s11783-021-1420-8
REVIEW ARTICLE
REVIEW ARTICLE

Advances in airborne microorganisms detection using biosensors: A critical review

Author information +
History +

Highlights

• Airborne microorganism detection methods are summarized.

• Biosensors play an important role in detecting airborne microorganisms.

• The principle of biosensor detection of airborne microorganisms is introduced.

• The application and progress of biosensor in recent years is summarized.

• The future perspectives of biosensor are identified.

Abstract

Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human society on a global scale. In recent years, the detection technology for airborne microorganisms has developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies. However, these technologies still have some shortcomings; they are time-consuming and have low sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory, which limits their applications. A biosensor is a device that converts biological signals into detectable signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity, and low cost, biosensors have been widely used in environmental monitoring, medical research, food and agricultural safety, military medicine and other fields. In recent years, the performance of biosensors has greatly improved, becoming a promising technology for airborne microorganism detection. This review introduces the detection principle of biosensors from the three aspects of component identification, energy conversion principle, and signal amplification. It also summarizes its research and application in airborne microorganism detection. The new progress and future development trend of the biosensor detection of airborne microorganisms are analyzed.

Graphical abstract

Keywords

Biosensor / Airborne microorganisms / Microbiological detection technology

Cite this article

Download citation ▾
Jinbiao Ma, Manman Du, Can Wang, Xinwu Xie, Hao Wang, Qian Zhang. Advances in airborne microorganisms detection using biosensors: A critical review. Front. Environ. Sci. Eng., 2021, 15(3): 47 https://doi.org/10.1007/s11783-021-1420-8

References

[1]
Ahmed S R, Kim J, Tran V T, Suzuki T, Neethirajan S, Lee J, Park E Y (2017). In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform. Scientific Reports, 7(1): 44495
CrossRef Google scholar
[2]
Ariffin E Y, Tan L L, Karim N H A, Heng L Y (2018). Optical DNA biosensor based on square-planar ethyl piperidine substituted nickel (II) salphen complex for dengue virus detection. Sensors (Basel), 18(4): 1173
CrossRef Google scholar
[3]
Bahavarnia F, Mobed A, Hasanzadeh M, Saadati A, Hassanpour S, Mokhtarzadeh A (2020). Bio-assay of Acintobacter baumannii using DNA conjugated with gold nano-star: A new platform for microorganism analysis. Enzyme and Microbial Technology, 133: 109466
CrossRef Google scholar
[4]
Bai C, Lu Z, Jiang H, Yang Z, Liu X, Ding H, Li H, Dong J, Huang A, Fang T, Jiang Y, Zhu L, Lou X, Li S, Shao N (2018). Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosensors & Bioelectronics, 110: 162–167
CrossRef Google scholar
[5]
Bai H, Wang R, Hargis B, Lu H, Li Y (2012). A SPR aptasensor for detection of avian influenza virus H5N1. Sensors (Basel), 12(9): 12506–12518
CrossRef Google scholar
[6]
Bai L, Chen Y, Liu X, Zhou J, Cao J, Hou L, Guo S (2019). Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Analytica Chimica Acta, 1080: 75–83
CrossRef Google scholar
[7]
Bhardwaj J, Chaudhary N, Kim H, Jang J (2019). Subtyping of influenza A H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Analytica Chimica Acta, 1064: 94–103
CrossRef Google scholar
[8]
Bhardwaj N, Bhardwaj S K, Mehta J, Kim K H, Deep A (2017). MOF–bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus. ACS Applied Materials & Interfaces, 9(39): 33589–33598
CrossRef Google scholar
[9]
Bhardwaj N, Bhardwaj S K, Mehta J, Mohanta G C, Deep A (2016). Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae). Analytical Biochemistry, 505: 18–25
CrossRef Google scholar
[10]
Bhattacharyya D, Smith Y R, Mohanty S K, Misra M (2016). Titania nanotube array sensor for electrochemical detection of four predominate Tuberculosis volatile biomarkers. Journal of the Electrochemical Society, 163(6): B206
CrossRef Google scholar
[11]
Brenner D J, Hall E J (2007). Computed tomography — An increasing source of radiation exposure. New England Journal of Medicine, 357(22): 2277–2284
CrossRef Google scholar
[12]
Briceno R K, Sergent S R, Benites S M, Alocilja E C (2019). Nanoparticle-based biosensing assay for universally accessible low-cost TB detection with comparable sensitivity as culture. Diagnostics (Basel), 9(4): 222
CrossRef Google scholar
[13]
Cesewski E, Johnson B N (2020). Electrochemical biosensors for pathogen detection. Biosensors & Bioelectronics, 159: 112214
CrossRef Google scholar
[14]
Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X, Yang C H, Chen J (2013). Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale, 5(9): 3620–3626
CrossRef Google scholar
[15]
Chang P H, Weng C C, Li B R, Li Y K (2020). An antifouling peptide-based biosensor for determination of Streptococcus pneumonia markers in human serum. Biosensors & Bioelectronics, 151: 111969
CrossRef Google scholar
[16]
Chang Y F, Wang W H, Hong Y W, Yuan R Y, Chen K H, Huang Y W, Lu P L, Chen Y H, Chen Y M A, Su L C, Wang S F (2018). Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Analytical Chemistry, 90(3): 1861–1869
CrossRef Google scholar
[17]
Chen Q, Zhang L, Jiang F, Wang B, Lv T, Zeng Z, Wu W, Sun S (2017). MnO2 microsphere absorbing Cy5-labeled single strand DNA probe serving as powerful biosensor for effective detection of mycoplasma ovipneumoniae. Sensors and Actuators. B, Chemical, 244: 1138–1144
CrossRef Google scholar
[18]
Chen Y, Liu X, Guo S, Cao J, Zhou J, Zou J, Bai L (2019). A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials, 216: 119253
CrossRef Google scholar
[19]
Cui F, Zhou H S (2020). Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosensors & Bioelectronics, 165: 112349
CrossRef Google scholar
[20]
Cui X, Das A, Dhawane A N, Sweeney J, Zhang X, Chivukula V, Iyer S S (2017). Highly specific and rapid glycan based amperometric detection of influenza viruses. Chemical Science (Cambridge), 8(5): 3628–3634
CrossRef Google scholar
[21]
Dastider S G, Barizuddin S, Yuksek N S, Dweik M, Almasri M F (2015). Efficient and rapid detection of Salmonella using microfluidic impedance based sensing. Journal of Sensors, 8: 293461
CrossRef Google scholar
[22]
Dehghani Z, Mohammadnejad J, Hosseini M, Bakhshi B, Rezayan A H (2020). Whole cell FRET immunosensor based on graphene oxide and graphene dot for Campylobacter jejuni detection. Food Chemistry, 309: 125690
CrossRef Google scholar
[23]
Després V R, Huffman J A, Burrows S M, Hoose C, Safatov A S, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae M O, Pöschl U, Jaenicke R (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chemical and Physical Meteorology, 64(1): 15598
CrossRef Google scholar
[24]
Donaldson K A, Kramer M F, Lim D V (2004). A rapid detection method for Vaccinia virus, the surrogate for smallpox virus. Biosensors & Bioelectronics, 20(2): 322–327
CrossRef Google scholar
[25]
Dong S, Zhao R, Zhu J, Lu X, Li Y, Qiu S, Jia L, Jiao X, Song S, Fan C, Hao R, Song H (2015). Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus. ACS Applied Materials & Interfaces, 7(16): 8834–8842
CrossRef Google scholar
[26]
Doremalen N, Bushmaker T, Morris D H, Holbrook M G, Gamble A, Williamson B N, Tamin A, Harcourt J L, Thornburg N J, Gerber S I, Lloyd-Smith J O, Wit E, Munster V J (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine, 382(16): 1564–1567
CrossRef Google scholar
[27]
Eddabra R, Ait Benhassou H (2018). Rapid molecular assays for detection of tuberculosis. Pneumonia, 10(1): 4
CrossRef Google scholar
[28]
Freije C A, Myhrvold C, Boehm C K, Lin A E, Welch N L, Carter A, Metsky H C, Luo C Y, Abudayyeh O O, Gootenberg J S, Yozwiak N L, Zhang F, Sabeti P C (2019). Programmable inhibition and detection of RNA viruses using Cas13. Molecular Cell, 76(5): 826–837.e11
CrossRef Google scholar
[29]
Fronczek C F, Yoon J Y (2015). Biosensors for monitoring airborne pathogens. Journal of Laboratory Automation, 20(4): 390–410
CrossRef Google scholar
[30]
Gao A, Chen S, Wang Y, Li T (2018). Silicon nanowire field-effect-transistor-based biosensor for biomedical applications. Sensors and Materials, 30(8): 1619–1628
CrossRef Google scholar
[31]
Gopinath S C B, Perumal V, Kumaresan R, Lakshmipriya T, Rajintraprasad H, Rao B S, Arshad M K Md, Chen Y, Kotani N, Hashim U (2016). Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Mikrochimica Acta, 183(10): 2697–2703
CrossRef Google scholar
[32]
Grabowska I, Malecka K, Stachyra A, Gora-Sochacka A, Sirko A, Zagorski-Ostoja W, Radecka H, Radecki J (2013). Single electrode genosensor for simultaneous determination of sequences encoding hemagglutinin and neuraminidase of avian influenza virus type H5N1. Analytical Chemistry, 85(21): 10167–10173
CrossRef Google scholar
[33]
Güner A, Cevik E, Senel M, Alpsoy L (2017). An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chemistry, 229: 358–365
CrossRef Google scholar
[34]
Guo X, Kulkarni A, Doepke A, Halsall H B, Iyer S, Heineman W R (2012). Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Analytical Chemistry, 84(1): 241–246
CrossRef Google scholar
[35]
Gupta S, Kakkar V (2018). Recent technological advancements in tuberculosis diagnostics: A review. Biosensors & Bioelectronics, 115: 14–29
CrossRef Google scholar
[36]
Hassanpour S, Saadati A, Hasanzadeh M (2020). pDNA conjugated with citrate capped silver nanoparticles towards ultrasensitive bio-assay of Haemophilus influenza in human biofluids: A novel optical biosensor. Journal of Pharmaceutical and Biomedical Analysis, 180: 113050
CrossRef Google scholar
[37]
Hideshima S, Hinou H, Ebihara D, Sato R, Kuroiwa S, Nakanishi T, Nishimura S I, Osaka T (2013). Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor. Analytical Chemistry, 85(12): 5641–5644
CrossRef Google scholar
[38]
Hoehl S, Rabenau H, Berger A, Kortenbusch M, Cinatl J, Bojkova D, Behrens P, Böddinghaus B, Götsch U, Naujoks F, Neumann P, Schork J, Tiarks-Jungk, P, Walczok A, Eickmann M, Vehreschild M J G T, Kann G, Wolf T, Gottschalk R, Ciesek S (2020). Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. The New England Journal of Medicine, 382(13): 1278–1280
CrossRef Google scholar
[39]
Hong G, Liu Y, Chen W, Weng S, Liu Q, Liu A, Zheng D, Lin X (2012). A sandwich-type DNA electrochemical biosensor for hairpin-stem-loop structure based on multistep temperature-controlling method. International Journal of Nanomedicine, 7: 4953–4960
CrossRef Google scholar
[40]
Hu S, Niu L, Zhao F, Yan L, Nong J, Wang C, Gao N, Zhu X, Wu L, Bo T, Wang H, Gu J (2019). Identification of Acinetobacter baumannii and its carbapenem-resistant gene blaOXA-23-like by multiple cross displacement amplification combined with lateral flow biosensor. Scientific Reports, 9(1): 17888
CrossRef Google scholar
[41]
Hu Y, Xu X, Liu Q, Wang L, Lin Z, Chen G (2014). Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. Analytical Chemistry, 86(17): 8785–8790
CrossRef Google scholar
[42]
Huang J, Xie Z, Xie Z, Luo S, Xie L, Huang L, Fan Q, Zhang Y, Wang S, Zeng T (2016). Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Analytica Chimica Acta, 913: 121–127
CrossRef Google scholar
[43]
Hudu S A, Alshrari A S, Syahida A, Sekawi Z (2016). Cell culture, technology: enhancing the culture of diagnosing human diseases. Journal of Clinical and Diagnostic Research: JCDR, 10(3): DE1–DE5
CrossRef Google scholar
[44]
Ishikawa F N, Chang H K, Curreli M, Liao H I, Olson C A, Chen P C, Zhang R, Roberts R W, Sun R, Cote R J, Thompson M E, Zhou C (2009). Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 3(5): 1219–1224
CrossRef Google scholar
[45]
Islam M A, Hassen W M, Tayabali A F, Dubowski J J (2020). Antimicrobial warnericin RK peptide functionalized GaAs/AlGaAs biosensor for highly sensitive and selective detection of Legionella pneumophila. Biochemical Engineering Journal, 154: 107435
CrossRef Google scholar
[46]
Ji J, Pang Y, Li D, Wang X, Xu Y, Mu X (2020). Single-layered graphene/Au-nanoparticles-based love wave biosensor for highly sensitive and specific detection of Staphylococcus aureus gene sequences. ACS Applied Materials & Interfaces, 12(11): 12417–12425
CrossRef Google scholar
[47]
Jiang G, Wang C, Song L, Wang X, Zhou Y, Fei C, Liu H (2021). Aerosol transmission, an indispensable route of COVID-19 spread: Case study of a department-store cluster. Frontiers of Environmental Science & Engineering, 15(3): 46
CrossRef Google scholar
[48]
Jung J H, Cheon D S, Liu F, Lee K B, Seo T S (2010). A graphene oxide based immuno-biosensor for pathogen detection. Angewandte Chemie International Edition, 49(33): 5708–5711
CrossRef Google scholar
[49]
Karash S, Wang R, Kelso L, Lu H, Huang T J , Li Y (2016). Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. Journal of Virological Methods, 236: 147–156
CrossRef Google scholar
[50]
Khan N I, Mousazadehkasin M, Ghosh S, Tsavalas J G, Song E (2020). An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. Analyst (London), 145(13): 4494–4503
CrossRef Google scholar
[51]
Kim G, Moon J H, Moh C Y, Lim J G (2015). A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosensors & Bioelectronics, 67: 243–247
CrossRef Google scholar
[52]
Koo B, Jin C E, Park S Y, Lee T Y, Nam J, Jang Y R, Kim S M, Kim J Y, Kim S H, Shin Y (2018). A rapid bio-optical sensor for diagnosing Q fever in clinical specimens. Journal of Biophotonics, 11(4): e201700167
CrossRef Google scholar
[53]
Kumar N, Bhatia S, Pateriya A K, Sood R, Nagarajan S, Murugkar H V, Kumar S, Singh P, Singh V P (2020). Label-free peptide nucleic acid biosensor for visual detection of multiple strains of influenza A virus suitable for field applications. Analytica Chimica Acta, 1093: 123–130
CrossRef Google scholar
[54]
Kwon J, Lee Y, Lee T, Ahn J H (2020). Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. Analytical Chemistry, 92(7): 5524–5531
CrossRef Google scholar
[55]
Labib M, Zamay A S, Muharemagic D, Chechik A V, Bell J C, Berezovski M V (2012). Aptamer-based viability impedimetric sensor for viruses. Analytical Chemistry, 84(4): 1813–1816
CrossRef Google scholar
[56]
Lee J, Morita M, Takemura K, Park E Y (2018). A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosensors & Bioelectronics, 102: 425–431
CrossRef Google scholar
[57]
Li J, Wu J, He Z, Pei H, Xia Q, Wu Q, Ju H (2019). Fast detection of mycoplasma pneumoniae by interaction of tetramolecular G-quadruplex with graphene oxide. Sensors and Actuators. B, Chemical, 290: 41–46
CrossRef Google scholar
[58]
Li Y, Xie G, Qiu J, Zhou D, Gou D, Tao Y, Li Y, Chen H (2018). A new biosensor based on the recognition of phages and the signal amplification of organic-inorganic hybrid nanoflowers for discriminating and quantitating live pathogenic bacteria in urine. Sensors and Actuators. B, Chemical, 258: 803–812
CrossRef Google scholar
[59]
Liu F, Kim Y H, Cheon D S, Seo T S (2013). Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sensors and Actuators. B, Chemical, 186: 252–257
CrossRef Google scholar
[60]
Liu H, Zhang Z, Wen N, Wang C (2018a). Determination and risk assessment of airborne endotoxin concentrations in a university campus. Journal of Aerosol Science, 115: 146–157
CrossRef Google scholar
[61]
Liu L, Shan D, Zhou X, Shi H, Song B, Falke F, Leinse A, Heideman R (2018b). TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosensors & Bioelectronics, 106: 117–121
CrossRef Google scholar
[62]
Liu L, Xiang G, Jiang D, Du C, Liu C, Huang W, Pu X (2016). Electrochemical gene sensor for Mycoplasma pneumoniae DNA using dual signal amplification via a Pt@Pd nanowire and horse radish peroxidase. Mikrochimica Acta, 183(1): 379–387
CrossRef Google scholar
[63]
Liu Q, Lim B K L, Lim S W, Tang W Y, Gu Z H, Chung J, Park M K, Barkham T (2018c). Label-free, real-time and multiplex detection of Mycobacterium tuberculosis based on silicon photonic microring sensors and asymmetric isothermal amplification technique (SPMS-AIA). Sensors and Actuators. B, Chemical, 255: 1595–1603
CrossRef Google scholar
[64]
Lubkowicz D, Ho C L, Hwang I Y, Yew W S, Lee Y S, Chang M W (2018). Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synthetic Biology, 7(5): 1229–1237
CrossRef Google scholar
[65]
Lum J, Wang R, Lassiter K, Srinivasan B, Abi-Ghanem D, Berghman L, Hargis B, Tung S, Lu H, Li Y (2012). Rapid detection of avian influenza H5N1 virus using impedance measurement of immuno-reaction coupled with RBC amplification. Biosensors & Bioelectronics, 38(1): 67–73
CrossRef Google scholar
[66]
Maeng B, Park Y, Park J (2016). Direct label-free detection of Rotavirus using a hydrogel based nanoporous photonic crystal. RSC Advances, 6(9): 7384–7390
CrossRef Google scholar
[67]
Malvano F, Pilloton R, Albanese D (2020). A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food Chemistry, 325: 126868
CrossRef Google scholar
[68]
Masdor N A, Altintas Z, Tothill I E (2016). Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosensors & Bioelectronics, 78: 328–336
CrossRef Google scholar
[69]
Mavrikou S, Moschopoulou G, Tsekouras V, Kintzios S (2020). Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors, 20(11): 3121
CrossRef Google scholar
[70]
Mazlan N F, Tan L L, Karim N H A, Heng L Y, Jamaluddin N D, Yusof N Y M, Quay D H X, Khalid B (2019). Acrylic-based genosensor utilizing metal salphen labeling approach for reflectometric dengue virus detection. Talanta, 198: 358–370
CrossRef Google scholar
[71]
Mekonnen D, Mengist H M, Derbie A, Nibret E, Munshea A, He H L, Li B F, Jin T C (2020). Diagnostic accuracy of serological tests and kinetics of severe acute respiratory syndrome coronavirus 2 antibody: A systematic review and meta-analysis. Reviews in Medical Virology, 2020: e2181 (Published online)
CrossRef Google scholar
[72]
Meyer M H F, Stehr M, Bhuju S, Krause H J, Hartmann M, Miethe P, Singh M, Keusgen M (2007). Magnetic biosensor for the detection of Yersinia pestis. Journal of Microbiological Methods, 68(2): 218–224
CrossRef Google scholar
[73]
Mobed A, Hasanzadeh M, Hassanpour S, Saadati A, Agazadeh M, Mokhtarzadeh A (2019a). An innovative nucleic acid based biosensor toward detection of Legionella pneumophila using DNA immobilization and hybridization: A novel genosensor. Microchemical Journal, 148: 708–716
CrossRef Google scholar
[74]
Mobed A, Nami F, Hasanzadeh M, Hassanpour S, Saadati A, Mokhtarzadeh A (2019b). novel nucleic acid based bio-assay toward recognition of Haemophilus influenza using bioconjugation and DNA hybridization method. International Journal of Biological Macromolecules, 139: 1239–1251
CrossRef Google scholar
[75]
Moradi M, Sattarahmady N, Rahi A, Hatam G R, Sorkhabadi S M R, Heli H (2016). A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta, 161: 48–53
CrossRef Google scholar
[76]
Moreno-Bondi M C, Taitt C R, Shriver-Lake L C, Ligler F S (2006). Multiplexed measurement of serum antibodies using an array biosensor. Biosensors & Bioelectronics, 21(10): 1880–1886
CrossRef Google scholar
[77]
Muhammad-Tahir Z, Alocilja E C (2003). Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. IEEE Sensors Journal, 3(4): 345–351
CrossRef Google scholar
[78]
Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin M R (2018). Point-of-care microfluidic devices for pathogen detection. Biosensors & Bioelectronics, 117: 112–128
CrossRef Google scholar
[79]
Nguyen V T, Seo H B, Kim B C, Kim S K, Song C S, Gu M B (2016). Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosensors & Bioelectronics, 86: 293–300
CrossRef Google scholar
[80]
Nidzworski D, Pranszke P, Grudniewska M, Król E, Gromadzka B (2014). Universal biosensor for detection of influenza virus. Biosensors & Bioelectronics, 59: 239–242
CrossRef Google scholar
[81]
Nugaeva N, Gfeller K Y, Backmann N, Duggelin M, Lang H P, Guntherodt H J, Hegner M (2007). An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microscopy and Microanalysis, 13(1): 13–17
CrossRef Google scholar
[82]
Pal S, Alocilja E C, Downes F P (2007). Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosensors & Bioelectronics, 22(9–10): 2329–2336
CrossRef Google scholar
[83]
Paolucci M, Landini M P, Sambri V (2010). Conventional and molecular techniques for the early diagnosis of bacteraemia. International Journal of Antimicrobial Agents, 36: S6–S16
CrossRef Google scholar
[84]
Parab H J, Jung C, Lee J H, Park H G (2010). A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosensors & Bioelectronics, 26(2): 667–673
CrossRef Google scholar
[85]
Park T J, Hyun M S, Lee H J, Lee S Y, Ko S (2009). A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta, 79(2): 295–301
CrossRef Google scholar
[86]
Peláez E C, Estevez M C, Mongui A, Menéndez M C, Toro C, Herrera-Sandoval O L, Robledo J, García M J, Portillo P D, Lechuga L M (2020). Detection and quantification of HspX antigen in sputum samples using plasmonic biosensing: toward a real point-of-care (POC) for tuberculosis diagnosis. ACS Infectious Diseases, 6(5): 1110–1120
CrossRef Google scholar
[87]
Phunpae P, Chanwong S, Tayapiwatana C, Apiratmateekul N, Makeudom A, Kasinrerk W (2014). Rapid Diagnosis of tuberculosis by identification of Antigen 85 in mycobacterial culture system. Diagnostic Microbiology and Infectious Disease, 78(3): 242–248
CrossRef Google scholar
[88]
Pineda M F, Chan L L Y, Kuhlenschmidt T, Choi C J, Kuhlenschmidt M, Cunningham B T (2009). Rapid specific and label-free detection of porcine Rotavirus using photonic crystal biosensors. IEEE Sensors Journal, 9(4): 470–477
CrossRef Google scholar
[89]
Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick G A, Wang J (2020). Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 14(5): 5268–5277
CrossRef Google scholar
[90]
Rai V, Nyine Y T, Hapuarachchi H C, Yap H M, Ng L C, Toh C S (2012). Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp. Biosensors & Bioelectronics, 32(1): 133–140
CrossRef Google scholar
[91]
Razzini K, Castrica M, Menchetti L, Maggi L, Negroni L, Orfeo N V, Pizzoccheri A, Stocco M, Muttini S, Balzaretti C M (2020). SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Science of the Total Environment, 742: 140540
CrossRef Google scholar
[92]
Rufino de Sousa N, Sandstrrom N, Shen L, Håkansson K, Vezozzo R, Udekwu K I, Croda J, Rothfuchs A G (2020). A fieldable electrostatic air sampler enabling tuberculosis detection in bioaerosols. Tuberculosis (Edinburgh, Scotland), 120: 101896
CrossRef Google scholar
[93]
Schlaberg R, Chiu C Y, Miller S, Procop G W, Weinstock G (2017). Validation of metagenomic next-generation sequencing tests for universal pathogen detection. Archives of Pathology & Laboratory Medicine, 141(6): 776–786
CrossRef Google scholar
[94]
Sedighi-Khavidak S, Mazloum-Ardakani M, Khorasgani M R, Emtiazi G, Hosseinzadeh L (2017). Detection of aflD gene in contaminated pistachio with Aspergillus flavus by DNA based electrochemical biosensor. International Journal of Food Properties, 20(Sup1): S119–S130
CrossRef Google scholar
[95]
Seibel A, Heinz W, Greim C A, Weber S (2020). Lung ultrasound in COVID-19. Anaesthesist (Published online),
CrossRef Google scholar
[96]
Seo G, Lee G, Kim M J, Baek S H, Choi M, Ku K B, Lee C S, Jun S M, Park D, Kim S J, Lee J O, Kim B T, Park E C, Kim S (2020). Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based Biosensor. ACS Nano, 14(4): 5135–5142
CrossRef Google scholar
[97]
Setti L, Passarini F, de Gennaro G, Barbieri P, Perrone M G, Borelli M, Palmisani J, Di Gilio A, Torboli V, Fontana F, Clemente L, Pallavicini A, Ruscio M, Piscitelli P, Miani A (2020). SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environmental Research, 188: 109754
CrossRef Google scholar
[98]
Sheikhzadeh E, Chamsaz M, Turner A P F, Jager E W H, Beni V (2016). Label-free impedimetric biosensor for Salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosensors & Bioelectronics, 80: 194–200
CrossRef Google scholar
[99]
Shen F, Tan M, Wang Z, Yao M, Xu Z, Wu Y, Wang J, Guo X, Zhu T (2011). Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols. Environmental Science & Technology, 45(17): 7473–7480
CrossRef Google scholar
[100]
Shen F, Wang J, Xu Z, Wu Y, Chen Q, Li X, Jie X, Li L, Yao M, Guo X, Zhu T (2012). Rapid flu diagnosis using silicon nanowire sensor. Nano Letters, 12(7): 3722–3730
CrossRef Google scholar
[101]
Shen Z, Wang J, Qiu Z, Jin M, Wang X, Chen Z, Li J, Cao F (2009). Detection of Escherichia coli O157:H7 with piezoelectric immunosensor based on enhancement with immuno-nanoparticles. Acta Microbiologica Sinica, 49(6): 820–825
[102]
Silva Junior A G, Oliveira M D L, Oliveira I S, Lima-Neto R G, Sá S R, Franco O L, Andrade C A S (2018). A simple nanostructured impedimetric biosensor based on clavanin a peptide for bacterial detection. Sensors and Actuators. B, Chemical, 255: 3267–3274
CrossRef Google scholar
[103]
Soler M, Belushkin A, Cavallini A, Kebbi-Beghdadi C, Greub G, Altug H (2017). Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosensors & Bioelectronics, 94: 560–567
CrossRef Google scholar
[104]
Song L, Wang C, Wang Y (2020). Optimized determination of airborne tetracycline resistance genes in laboratory atmosphere. Frontiers of Environmental Science & Engineering, 14(6): 95
CrossRef Google scholar
[105]
Su L C, Chang C M, Tseng Y L, Chang Y F, Li Y C, Chang Y S, Chou C (2012). Rapid and highly sensitive method for influenza A (H1N1) virus detection. Analytical Chemistry, 84(9): 3914–3920
CrossRef Google scholar
[106]
Tian J, Wang D, Zheng Y, Jing T (2017). A high sensitive electrochemical avian influenza virus H7 biosensor based on CNTs/MoSx aerogel. International Journal of Electrochemical Science, 12(4): 2658–2668
CrossRef Google scholar
[107]
Vásquez G, Rey A, Rivera C, Iregui C, Orozco J (2017). Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosensors & Bioelectronics, 87: 453–458
CrossRef Google scholar
[108]
Wang L, Huo X, Zheng L, Cai G, Wang Y, Liu N, Wang M, Lin J (2020a). An ultrasensitive biosensor for colorimetric detection of Salmonella in large-volume sample using magnetic grid separation and platinum loaded zeolitic imidazolate Framework-8 nanocatalysts. Biosensors & Bioelectronics, 150: 111862
CrossRef Google scholar
[109]
Wang L, Huo X T, Qi W, Xia Z, Li Y, Lin J (2020b). Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta, 211: 120715
CrossRef Google scholar
[110]
Wang Y, Wang C, Song L (2019a). Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: Exposure risk to human. Science of the Total Environment, 694: 133750
CrossRef Google scholar
[111]
Wang Y, Wang Y, Jiao W, Li J, Quan S, Sun L, Wang Y, Qi X, Wang X, Shen A (2019b). Development of loop-mediated isothermal amplification coupled with nanoparticle-based lateral flow biosensor assay for Mycoplasma pneumoniae detection. AMB Express, 9(1): 196
CrossRef Google scholar
[112]
Wang Y, Wang Y, Quan S, Jiao W, Li J, Sun L, Wang Y, Qi X, Wang X, Shen A (2019c). Establishment and application of a multiple cross displacement amplification coupled with nanoparticle-based lateral flow biosensor assay for detection of Mycoplasma pneumoniae. Frontiers in Cellular and Infection Microbiology, 9: 325
CrossRef Google scholar
[113]
Wasik D, Mulchandani A, Yates M V (2017). A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosensors & Bioelectronics, 91: 811–816
CrossRef Google scholar
[114]
Wei H, Guo Z, Zhu Z, Tan Y, Du Z, Yang R (2007). Sensitive detection of antibody against antigen F1 of Yersinia pestis by an antigen sandwich method using a portable fiber optic biosensor. Sensors and Actuators. B, Chemical, 127(2): 525–530
CrossRef Google scholar
[115]
Wei X, Zheng L, Luo F, Lin Z, Guo L, Qiu B, Chen G (2013). Fluorescence biosensor for the H5N1 antibody based on a metal-organic framework platform. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 1(13): 1812–1817
CrossRef Google scholar
[116]
Weile J, Knabbe C (2009). Current applications and future trends of molecular diagnostics in clinical bacteriology. Analytical and Bioanalytical Chemistry, 394(3): 731–742
CrossRef Google scholar
[117]
Wen N, Liu H, Fu Y, Wang C (2017). Optimization and influence mechanism of sampling and analysis of airborne endotoxin based on limulus amebocyte lysate assay. Aerosol and Air Quality Research, 17(4): 1000–1010
CrossRef Google scholar
[118]
Wu K, Ma C, Zhao H, Chen M, Deng Z (2019). Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification. Food Chemistry, 277: 273–278
CrossRef Google scholar
[119]
Wu Z, Zhou C, Chen J, Xiong C, Chen Z, Pang D, Zhang Z (2015). Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosensors & Bioelectronics, 68: 586–592
CrossRef Google scholar
[120]
Xiao T, Huang J, Wang D, Meng T, Yang X (2020). Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta, 206: 120210
CrossRef Google scholar
[121]
Xie X, Tan F, Xu A, Deng K, Zeng Y, Huang H (2019a). UV-induced peroxidase-like activity of gold nanoclusters for differentiating pathogenic bacteria and detection of enterotoxin with colorimetric readout. Sensors and Actuators. B, Chemical, 279: 289–297
CrossRef Google scholar
[122]
Xie X, Zhang Z, Ge X, Zhao X, Hao L, Cheng Z, Zhou W, Du Y, Wang L, Tian F, Xu X (2019b). Particle self-aligning, focusing, and electric impedance microcytometer device for label-free single cell morphology discrimination and Yeast budding analysis. ACS analytical chemistry, 91: 13398–13406
CrossRef Google scholar
[123]
Xing Y, Zhu Q, Zhou X, Qi P (2020). A dual-functional smartphone-based sensor for colorimetric and chemiluminescent detection: A case study for fluoride concentration mapping. Sensors and Actuators. B, Chemical, 319: 128254
CrossRef Google scholar
[124]
Xu S, Sharma H, Mutharasan R (2010). Sensitive and selective detection of Mycoplasma in cell culture samples using cantilever sensors. Biotechnology and Bioengineering, 105(6): 1069–1077
CrossRef Google scholar
[125]
Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J (2016). A review of impedance measurements of whole cells. Biosensors & Bioelectronics, 77: 824–836
CrossRef Google scholar
[126]
Yadav S K, Agrawal B, Chandra P, Goyal R N (2014). In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosensors & Bioelectronics, 55: 337–342
CrossRef Google scholar
[127]
Yan Z, Zhou L, Zhao Y, Wang J, Huang L, Hu K, Liu H, Wang H, Guo Z, Song Y, Huang H, Yang R (2006). Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sensors and Actuators. B, Chemical, 119(2): 656–663
CrossRef Google scholar
[128]
Yang Y, Gao W (2019). Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Reviews, 48(6): 1465–1491
CrossRef Google scholar
[129]
Ye W W, Tsang M K, Liu X, Yang M, Hao J (2014). Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small, 10(12): 2390–2397
CrossRef Google scholar
[130]
Yeh C H, Chang Y H, Chang T C, Lin H P, Lin Y C (2010). Electro-microchip DNA-biosensor for bacteria detection. Analyst (London), 135(10): 2717–2722
CrossRef Google scholar
[131]
Yoo M S, Shin M, Kim Y, Jang M, Choi Y E, Park S J, Choi J, Lee J, Park C (2017). Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere, 175: 269–274
CrossRef Google scholar
[132]
Yu P, Zhu J, Zhang Z, Han Y (2020). A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. Journal of Infectious Diseases, 221(11): 1757–1761
CrossRef Google scholar
[133]
Yu X, Chen F, Wang R, Li Y (2018). Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. Journal of Biotechnology, 266: 39–49
CrossRef Google scholar
[134]
Yu Y, Chen Z, Jian W, Sun D, Zhang B, Li X, Yao M (2015). Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Biosensors & Bioelectronics, 64: 566–571
CrossRef Google scholar
[135]
Yuan R, Ding S, Yan Y, Zhang Y, Zhang Y, Cheng W (2016). A facile and pragmatic electrochemical biosensing strategy for ultrasensitive detection of DNA in real sample based on defective T junction induced transcription amplification. Biosensors & Bioelectronics, 77: 19–25
CrossRef Google scholar
[136]
Zeinoddini M, Azizi A, Bayat S, Tavasoli Z (2018). Localized surface plasmon resonance (LSPR) detection of diphtheria toxoid using gold nanoparticle-monoclonal antibody conjugates. Plasmonics, 13(2): 583–590
CrossRef Google scholar
[137]
Zhang G, Zhang L, Huang M J, Luo Z H H, Tay G K I, Lim E J A, Kang T G, Chen Y (2010). Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors and Actuators. B, Chemical, 146(1): 138–144
CrossRef Google scholar
[138]
Zhang J, Huang J, He F (2019a). The construction of Mycobacterium tuberculosis 16S rDNA MSPQC sensor based on Exonuclease III-assisted cyclic signal amplification. Biosensors & Bioelectronics, 138: 111322
CrossRef Google scholar
[139]
Zhang X, Feng Y, Duan S, Su L, Zhang J, He F (2019b). Mycobacterium tuberculosis strain H37Rv electrochemical sensor mediated by aptamer and AuNPs–DNA. ACS Sensors, 4(4): 849–855
CrossRef Google scholar
[140]
Zhang X, Feng Y, Yao Q, He F (2017). Selection of a new Mycobacterium tuberculosis H37Rv aptamer and its application in the construction of a SWCNT/aptamer/Au-IDE MSPQC H37Rv sensor. Biosensors & Bioelectronics, 98: 261–266
CrossRef Google scholar
[141]
Zhang Y, Lai B S, Juhas M (2019c). Recent advances in aptamer discovery and applications. Molecules (Basel, Switzerland), 24(5): 941
CrossRef Google scholar
[142]
Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J (2019). A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosensors & Bioelectronics, 124–125: 143–149
CrossRef Google scholar
[143]
Zheng Y, Chen H, Yao M, Li X (2018). Bacterial pathogens were detected from human exhaled breath using a novel protocol. Journal of Aerosol Science, 117: 224–234
CrossRef Google scholar
[144]
Ziółkowski R, Jarczewska M, Drozd M, Zasada A A, Malinowska E (2019). Studies on the development of electrochemical immunosensor for detection of diphtheria toxoid. Journal of the Electrochemical Society, 166(6): B472–B481
CrossRef Google scholar
[145]
Zuser K, Ettenauer J, Kellner K, Posnicek T, Mazza G, Brandl M (2019). A sensitive voltammetric biosensor for Escherichia coli detection using an electroactive substrate for beta-D-glucuronidase. IEEE Sensors Journal, 19(18): 7789–7802
CrossRef Google scholar

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 51678402) and the Tianjin New Crown Epidemic Emergency Project (No. 20ZXGBSY00100).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1180 KB)

Accesses

Citations

Detail

Sections
Recommended

/