Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster
Guanyu Jiang, Can Wang, Lu Song, Xing Wang, Yangyang Zhou, Chunnan Fei, He Liu
Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster
• Aerosol transmission is an indispensable route of COVID-19 spread.
• Different outbreak sites have different epidemiologic feature.
• SRAS-CoV-2 can exist for a long time in aerosol.
• SRAS-CoV-2 RNA can be detected in aerosol in diverse places.
• Some environmental factors can impact SARS-CoV-2 transportation in aerosol.
Patients with COVID-19 have revealed a massive outbreak around the world, leading to widespread concerns in global scope. Figuring out the transmission route of COVID-19 is necessary to control further spread. We analyzed the data of 43 patients in Baodi Department Store (China) to supplement the transmission route and epidemiological characteristics of COVID-19 in a cluster outbreak. Incubation median was estimated to endure 5.95 days (2–13 days). Almost 76.3% of patients sought medical attention immediately upon illness onset. The median period of illness onset to hospitalization and confirmation were 3.96 days (0–14) and 5.58 days (1–21), respectively. Patients with different cluster case could demonstrate unique epidemiological characteristics due to the particularity of outbreak sites. SRAS-CoV-2 can be released into the surrounding air through patient’s respiratory tract activities, and can exist for a long time for long-distance transportation. SRAS-CoV-2 RNA can be detected in aerosol in different sites, including isolation ward, general ward, outdoor, toilet, hallway, and crowded public area. Environmental factors influencing were analyzed and indicated that the SARS-CoV-2 transportation in aerosol was dependent on temperature, air humidity, ventilation rate and inactivating chemicals (ozone) content. As for the infection route of case numbers 2 to 6, 10, 13, 16, 17, 18, 20 and 23, we believe that aerosol transmission played a significant role in analyzing their exposure history and environmental conditions in Baodi Department Store. Aerosol transmission could occur in some cluster cases when the environmental factors are suitable, and it is an indispensable route of COVID-19 spread.
SARS-CoV-2 / COVID-19 / Environmental factor / Aerosol transmission / Epidemiologic characteristic
[1] |
Bassetti M, Vena A, Giacobbe D R (2020). The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm. European Journal of Clinical Investigation, 50(3): e13209
CrossRef
Google scholar
|
[2] |
Bhagavathula A S, Rahmani J, Aldhaleei W A, Kumar P, Rovetta A (2020). Global, regional and national incidence and case-fatality rates of novel coronavirus (COVID-19) across 154 countries and territories: A systematic assessment of cases reported from January to March 16, 2020. New York: medRxiv preprint doi:10.1101/2020.03.26.20044743
|
[3] |
Bukhari Q, Jameel Y (2020). Will coronavirus pandemic diminish by summer? Rochester,: Social Science Research Network eLibrery preprint doi:10.2139/ssrn.3556998
|
[4] |
Buonanno G, Stabile L, Morawska L (2020). Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International, 141: 105794
CrossRef
Google scholar
|
[5] |
Chan J F W, Yuan S F, Kok K H, To K K W, Chu H, Yang J, Xing F F, Liu J L, Yip C C Y, Poon R W S, Tsoi H W, Lo S K F, Chan K H, Poon V K M, Chan W M, Ip J D, Cai J P, Cheng V C C, Chen H L, Hui C K M, Yuen K Y (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395(10223): 514–523
CrossRef
Google scholar
|
[6] |
Chen N S, Zhou M, Dong X, Qu J M, Gong F Y, Han Y, Qiu Y, Wang J L, Liu Y, Wei Y, Xia J A, Yu T, Zhang X X, Zhang L (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 395(10223): 507–513
CrossRef
Google scholar
|
[7] |
Chia P Y, Coleman K K, Tan Y K, Ong S W X, Gum M, Lau S K, Lim X F, Lim A S, Sutjipto S, Lee P H, Son T T, Young B E, Milton D K, Gray G C, Schuster S, Barkham T, De P P, Vasoo S, Chan M, Ang B S P, Tan B H, Leo Y S, Ng O T, Wong M S Y, Marimuthu K (2020). Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nature Communications, 11(1): 2800
CrossRef
Google scholar
|
[8] |
Fabian P, McDevitt J J, DeHaan W H, Fung R O P, Cowling B J, Chan K H, Leung G M, Milton D K (2008). Influenza virus in human exhaled breath: an observational study. PLoS One, 3(7): e2691
CrossRef
Google scholar
|
[9] |
Gralton J, Tovey E, McLaws M L, Rawlinson W D (2011). The role of particle size in aerosolised pathogen transmission: A review. Journal of Infection, 62(1): 1–13
CrossRef
Google scholar
|
[10] |
Gralton J, Tovey E R, Mclaws M L, Rawlinson W D (2013). Respiratory virus RNA is detectable in airborne and droplet particles. Journal of Medical Virology, 85(12): 2151–2159
CrossRef
Google scholar
|
[11] |
Guo Z D, Wang Z Y, Zhang S F, Li X, Li L, Li C, Cui Y, Fu R B, Dong Y Z, Chi X Y, Zhang M Y, Liu K, Cao C, Liu B, Zhang K, Gao Y W, Lu B, Chen W (2020). Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerging Infectious Diseases, 26(7): 1583–1591
CrossRef
Google scholar
|
[12] |
Huang C L, Wang Y M, Li X W, Ren L L, Zhao J P, Hu Y, Zhang L, Fan G H, Xu J Y, Gu X Y, Cheng Z S, Yu T, Xia J A, Wei Y, Wu W J, Xie X L, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J G, Wang G F, Jiang R M, Gao Z C, Jin Q, Wang J W, Cao B (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223): 497–506
CrossRef
Google scholar
|
[13] |
Jiang J K, Vincent Fu Y, Liu L, Kulmala M (2020a). Transmission via aerosols: Plausible differences among emerging coronaviruses. Aerosol Science and Technology, 54(8): 865–868
CrossRef
Google scholar
|
[14] |
Jiang Y F, Wang H F, Chen Y K, He J X, Chen L G, Liu Y, Hu X Y, Li A, Liu S W, Zhang P, Zou H Y, Hua S C (2020b). Clinical data on hospital environmental hygiene monitoring and medical staffs protection during the coronavirus disease 2019 outbreak. New York: medRxiv preprint doi:10.1101/2020.02.25.20028043
|
[15] |
Kampf G, Todt D, Pfaender S, Steinmann E (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104(3): 246–251
CrossRef
Google scholar
|
[16] |
Lau H, Khosrawipour T, Kocbach P, Ichii H, Bania J, Khosrawipour V (2020). Evaluating the massive underreporting and undertesting of COVID-19 cases in multiple global epicenters. Pulmonology, doi:10.1016/j.pulmoe.2020.05.015
|
[17] |
Leung N H L, Chu D K W, Shiu E Y C, Chan K H, McDevitt J J, Hau B J P, Yen H L, Li Y G, Ip D K M, Peiris J S M, Seto W H, Leung G M, Milton D K, Cowling B J (2020). Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine, 26(5): 676–680
CrossRef
Google scholar
|
[18] |
Li Q, Guan X H, Wu P, Wang X Y, Zhou L, Tong Y Q, Ren R Q, Leung K S M, Lau E H Y, Wong J Y, Xing X S, Xiang N J, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W X, Chen C D, Jin L M, Yang R, Wang Q, Zhou S H, Wang R, Liu H, Luo Y B, Liu Y, Shao G, Li H, Tao Z F, Yang Y, Deng Z Q, Liu B X, Ma Z T, Zhang Y P, Shi G Q, Lam T T Y, Wu J T, Gao G F, Cowling B J, Yang B, Leung G M, Feng Z J (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine, 382(13): 1199–1207 doi:10.1056/NEJMoa2001316
|
[19] |
Liu Q H, Liu Z C, Zhu J K, Zhu Y H, Li D Q, Gao Z F, Zhou L L, Tang Y B, Zhang X, Yang J Y, Wang Q (2020a). Assessing the Global Tendency of COVID-19 Outbreak. New York: medRxiv preprint doi.org/10.1101/2020.03.18.20038224
|
[20] |
Liu Y, Ning Z, Chen Y, Guo M, Liu Y L, Gali N K, Sun L, Duan Y S, Cai J, Westerdahl D, Liu X J, Xu K, Ho K F, Kan H D, Fu Q Y, Lan K (2020b). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582: 557–560
CrossRef
Google scholar
|
[21] |
Ma Y L, Zhao Y D, Liu J T, He X T, Wang B, Fu S H, Yan J, Niu J P, Luo B (2020). Effects of temperature variation and humidity on the mortality of COVID-19 in Wuhan. New York: medRxiv preprint doi:10.1101/2020.03.15.20036426
|
[22] |
McMichael T M, Currie D W, Clark S, Pogosjans S, Kay M, Schwartz N G, Lewis J, Baer A, Kawakami V, Lukoff M D, Ferro J, Brostrom-Smith C, Rea T D, Sayre M R, Riedo F X, Russell D, Hiatt B, Montgomery P, Rao A K, Chow E J, Tobolowsky F, Hughes M J, Bardossy A C, Oakley L P, Jacobs J R, Stone N D, Reddy S C, Jernigan J A, Honein M A, Clark T A, Duchin J S (2020). Epidemiology of Covid-19 in a long-term care facility in King County, Washington. The New England Journal of Medicine, 382(21): 2005–2011 doi:10.1056/NEJMoa2005412
|
[23] |
Milton D K, Fabian M P, Cowling B J, Grantham M L, McDevitt J J (2013). Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathogens, 9(3): e1003205
CrossRef
Google scholar
|
[24] |
Myatt T A, Johnston S L, Zuo Z F, Wand M, Kebadze T, Rudnick S, Milton D K (2004). Detection of airborne rhinovirus and its relation to outdoor air supply in office environments. American Journal of Respiratory and Critical Care Medicine, 169(11): 1187–1190
CrossRef
Google scholar
|
[25] |
Pan X F, Chen D X, Xia Y, Wu X W, Li T S, Ou X T, Zhou L Y, Liu J (2020). Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet. Infectious Diseases, 20(4): 410–411
CrossRef
Google scholar
|
[26] |
Phan L T, Nguyen T V, Luong Q C, Nguyen T V, Nguyen H T, Le H Q, Nguyen T T, Cao T M, Pham Q D (2020). Importation and human-to-human transmission of a novel coronavirus in Vietnam. New England Journal of Medicine, 382(9): 872–874
CrossRef
Google scholar
|
[27] |
Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers M M, Oude Munnink B B, de Meulder D, van Amerongen G, van den Brand J, Okba N M A, Schipper D, van Run P, Leijten L, Sikkema R, Verschoor E, Verstrepen B, Bogers W, Langermans J, Drosten C, Fentener van Vlissingen M, Fouchier R, de Swart R, Koopmans M, Haagmans B L (2020). Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, 368(6494): 1012–1015
CrossRef
Google scholar
|
[28] |
Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, Zimmer T, Thiel V, Janke C, Guggemos W, Seilmaier M, Drosten C, Vollmar P, Zwirglmaier K, Zange S, Wölfel R, Hoelscher M (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. The New England Journal of Medicine, 382(10): 970–971
|
[29] |
Roy C J, Milton D K (2004). Airborne transmission of communicable infection: The elusive pathway. New England Journal of Medicine, 350(17): 1710–1712
CrossRef
Google scholar
|
[30] |
Santarpia J L, Rivera D N, Herrera V L, Morwitzer M J, Creager H M, Santarpia G W, Crown K K, Brett-Major D M, Schnaubelt E R, Broadhurst M J, Lawler J V, Reid S P, Lowe J J (2020). Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Scientific Reports, 10(1): 12732
CrossRef
Google scholar
|
[31] |
Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone M G, Borelli M, Palmisani J, Di Gilio A, Torboli V, Fontana F, Clemente L, Pallavicini A, Ruscio M, Piscitelli P, Miani A (2020). SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environmental Research, 188: 109754
CrossRef
Google scholar
|
[32] |
Siegel J D, Rhinehart E, Jackson M, Chiarello L (2007). Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. American Journal of Infection Control, 35(10): S65–S164
CrossRef
Google scholar
|
[33] |
Sooryanarain H, Elankumaran S (2015). Environmental role in influenza virus outbreaks. Annual Review of Animal Biosciences, 3(1): 347–373
CrossRef
Google scholar
|
[34] |
Tellier R, Li Y G, Cowling B J, Tang J W (2019). Recognition of aerosol transmission of infectious agents: A commentary. BMC Infectious Diseases, 19: 101
CrossRef
Google scholar
|
[35] |
Wang W E, Tang J M, Wei F Q (2020). Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. Journal of Medical Virology, 92(4): 441–447
CrossRef
Google scholar
|
[36] |
World Health Organization (2014). Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care. Geneva: World Health Organization
|
[37] |
Xu B, Gutierrez B, Mekaru S, Sewalk K, Goodwin L, Loskill A, Cohn E L, Hswen Y, Hill S C, Cobo M M, Zarebski A E, Li S, Wu C, Hulland E, Morgan J D, Wang L, O’Brien K, Scarpino S V, Brownstein J S, Pybus O G, Pigott D M, Kraemer M U G (2020a). Epidemiological data from the COVID-19 outbreak, real-time case information. Scientific Data, 7(1): 106
CrossRef
Google scholar
|
[38] |
Xu R, Rahmandad H, Gupta M, DiGennaro C, Ghaffarzadegan N, Amini H, Jalali M S (2020b). The modest impact of weather and air pollution on COVID-19 transmission. New York: medRxiv preprint doi:10.1101/2020.05.05.20092627
|
[39] |
Yao M S, Zhang L, Ma J X, Zhou L (2020). On airborne transmission and control of SARS-Cov-2. Science of the Total Environment, 731: 139178
CrossRef
Google scholar
|
[40] |
Zhang X L, Ji Z, Yue Y, Liu H, Wang J (2020). Infection risk assessment of COVID-19 through aerosol transmission: a case study of South China Seafood Market. Environmental Science & Technology, doi:10.1021/acs.est.0c02895
|
[41] |
Zhu N, Zhang D Y, Wang W L, Li X W, Yang B Y, Song J D, Zhao X, Huang B Y, Shi W F, Lu R J, Niu P H, Zhan F X, Ma X J, Wang D Y, Xu W B, Wu G Z, Gao G F, Tan W J (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8): 727–733 doi:10.1056/NEJMoa2001017
|
/
〈 | 〉 |