Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption

Zihao Li , Yang Geng , Lei Ma , Xiaoyin Chen , Junhua Li , Huazhen Chang , Johannes W. Schwank

Front. Environ. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (4) : 65

PDF (873KB)
Front. Environ. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (4) : 65 DOI: 10.1007/s11783-020-1244-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption

Author information +
History +
PDF (873KB)

Abstract

• Strong metal-support interaction exists on Pt/Fe3O4 catalysts.

• Pt metal particles facilitate the formation of oxygen vacancies on Fe3O4.

• Fe3O4 supports enhance the strength of CO adsorption on Pt metal particles.

The self-inhibition behavior due to CO poisoning on Pt metal particles strongly impairs the performance of CO oxidation. It is an effective method to use reducible metal oxides for supporting Pt metal particles to avoid self-inhibition and to improve catalytic performance. In this work, we used in situ reductions of chloroplatinic acid on commercial Fe3O4 powder to prepare heterogeneous-structured Pt/Fe3O4 catalysts in the solution of ethylene glycol. The heterogeneous Pt/Fe3O4 catalysts achieved a better catalytic performance of CO oxidation compared with the Fe3O4 powder. The temperatures of 50% and 90% CO conversion were achieved above 260°C and 290°C at Pt/Fe3O4, respectively. However, they are accomplished on Fe3O4 at temperatures higher than 310°C. XRD, XPS, and H2-TPR results confirmed that the metallic Pt atoms have a strong synergistic interaction with the Fe3O4 supports. TGA results and transient DRIFTS results proved that the Pt metal particles facilitate the release of lattice oxygen and the formation of oxygen vacancies on Fe3O4. The combined results of O2-TPD and DRIFTS indicated that the activation step of oxygen molecules at surface oxygen vacancies could potentially be the rate-determining step of the catalytic CO oxidation at Pt/Fe3O4 catalysts. The reaction pathway involves a Pt-assisted Mars-van Krevelen (MvK) mechanism.

Graphical abstract

Keywords

Strong metal-support interaction (SMSI) / Surface oxygen vacancy / Lattice oxygen / Magnetite / Platinum metals

Cite this article

Download citation ▾
Zihao Li, Yang Geng, Lei Ma, Xiaoyin Chen, Junhua Li, Huazhen Chang, Johannes W. Schwank. Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption. Front. Environ. Sci. Eng., 2020, 14(4): 65 DOI:10.1007/s11783-020-1244-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allian A D, Takanabe K, Fujdala K L, Hao X, Truex T J, Cai J, Buda C, Neurock M, Iglesia E (2011). Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. Journal of the American Chemical Society, 133(12): 4498–4517

[2]

Anderson R M, Zhang L, Loussaert J A, Frenkel A I, Henkelman G, Crooks R M (2013). An experimental and theoretical investigation of the inversion of Pd@Pt Core@Shell dendrimer-encapsulated nanoparticles. ACS Nano, 7(10): 9345–9353

[3]

Ayyappan S, Gnanaprakash G, Panneerselvam G, Antony M, Philip J (2008). Effect of surfactant monolayer on reduction of Fe3O4 nanoparticles under vacuum. Journal of Physical Chemistry C, 112(47): 18376–18383

[4]

Bazin P, Saur O, Lavalley J, Daturi M, Blanchard G (2005). FT-IR study of CO adsorption on Pt/CeO2: Characterisation and structural rearrangement of small Pt particles. Physical Chemistry Chemical Physics, 7(1): 187–194

[5]

Beccat P, Bertolini J, Gauthier Y, Massardier J, Ruiz P (1990). Crotonaldehyde and methylcrotonaldehyde hydrogenation over Pt (111) and Pt80Fe20 (111) single crystals. Journal of Catalysis, 126(2): 451–456

[6]

Benvenutti E V, Franken L, Moro C C, Davanzo C U (1999). FTIR study of hydrogen and carbon monoxide adsorption on Pt/TiO2, Pt/ZrO2, and Pt/Al2O3. Langmuir, 15(23): 8140–8146

[7]

Bera P, Gayen A, Hegde M S, Lalla N P, Spadaro L, Frusteri F, Arena F (2003). Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation. Journal of Physical Chemistry B, 107(25): 6122–6130

[8]

Chavadej S, Saktrakool K, Rangsunvigit P, Lobban L L, Sreethawong T (2007). Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO2. Chemical Engineering Journal, 132(1–3): 345–353

[9]

Chen S, Si R, Taylor E, Janzen J, Chen J (2012). Synthesis of Pd/Fe3O4 hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation. Journal of Physical Chemistry C, 116(23): 12969–12976

[10]

Costa R C, Moura F C, Ardisson J, Fabris J, Lago R (2008). Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Applied Catalysis B: Environmental, 83(1–2): 131–139

[11]

Fu Q, Li W X, Yao Y, Liu H, Su H Y, Ma D, Gu X K, Chen L, Wang Z, Zhang H, Wang B, Bao X (2010). Interface-confined ferrous centers for catalytic oxidation. Science, 328(5982): 1141–1144

[12]

Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003). Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 301(5635): 935–938

[13]

Hadjiivanov K I, Vayssilov G N (2002). Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Advances in Catalysis, 47: 328

[14]

Ivanova A, Slavinskaya E, Gulyaev R, Zaikovskii V, Stonkus O, Danilova I, Plyasova L, Polukhina I, Boronin A (2010). Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Applied Catalysis B: Environmental, 97(1–2): 57–71

[15]

Jian W, Wang S P, Zhang H X, Bai F Q (2019). Disentangling the role of oxygen vacancies on the surface of Fe3O4 and g-Fe2O3. Inorganic Chemistry Frontiers, 6(10): 2660–2666

[16]

Li H, Jiao X, Li L, Zhao N, Xiao F, Wei W, Sun Y, Zhang B (2015). Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M= Li, Mg and Zr) hydrotalcites. Catalysis Science & Technology, 5(2): 989–1005

[17]

Liotta L, Di Carlo G, Pantaleo G, Venezia A (2010). Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect. Catalysis Today, 158(1–2): 56–62

[18]

Liu W, Flytzani-Stephanopoulos M (1995). Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity. Journal of Catalysis, 153(2): 304–316

[19]

Liu X, Korotkikh O, Farrauto R (2002). Selective catalytic oxidation of CO in H2: Structural study of Fe oxide-promoted Pt/alumina catalyst. Applied Catalysis A, General, 226(1–2): 293–303

[20]

Liu X, Zhou K, Wang L, Wang B, Li Y (2009). Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. Journal of the American Chemical Society, 131(9): 3140–3141

[21]

Liu Z P, Gong X Q, Kohanoff J, Sanchez C, Hu P (2003). Catalytic role of metal oxides in gold-based catalysts: A first principles study of CO oxidation on TiO2 supported Au. Physical Review Letters, 91(26): 266102

[22]

Loh K S, Lee Y H, Musa A, Salmah A A, Zamri I (2008). Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors (Basel), 8(9): 5775–5791

[23]

Newton M A, Ferri D, Smolentsev G, Marchionni V, Nachtegaal M (2015). Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nature Communications, 6(1): 8675–8681

[24]

Oliveira L, Fabris J, Rios R, Mussel W D N, Lago R (2004). Fe3-xMnxO4 catalysts: Phase transformations and carbon monoxide oxidation. Applied Catalysis A, General, 259(2): 253–259

[25]

Olsson L, Fridell E (2002). The influence of Pt oxide formation and Pt dispersion on the reactions NO2 ↔ NO+1/2O2 over Pt/Al2O3 and Pt/BaO/Al2O3. Journal of Catalysis, 210(2): 340–353 doi:10.1006/jcat.2002.3698

[26]

Passos F B, De Oliveira E R, Mattos L V, Noronha F B (2005). Partial oxidation of methane to synthesis gas on Pt/CexZr1–xO2 catalysts: the effect of the support reducibility and of the metal dispersion on the stability of the catalysts. Catalysis Today, 101(1): 23–30

[27]

Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8): 634–641

[28]

Ruiz Puigdollers A, Schlexer P, Tosoni S, Pacchioni G (2017). Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catalysis, 7(10): 6493–6513

[29]

Salomonsson P, Griffin T, Kasemo B (1993). Oxygen desorption and oxidation-reduction kinetics with methane and carbon monoxide over perovskite type metal oxide catalysts. Applied Catalysis A, General, 104(2): 175–197

[30]

Scirè S, Minicò S, Crisafulli C, Satriano C, Pistone A (2003). Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Applied Catalysis B: Environmental, 40(1): 43–49

[31]

Shou M, Tanaka K I, Yoshioka K, Moro-Oka Y, Nagano S (2004). New catalyst for selective oxidation of CO in excess H2 designing of the active catalyst having different optimum temperature. Catalysis Today, 90(3–4): 255–261

[32]

Tanaka K I, Shou M, He H, Shi X (2006). Significant enhancement of the oxidation of CO by H2 and/or H2O on a FeOx/Pt/TiO2 catalyst. Catalysis Letters, 110(3–4): 185–190

[33]

Wang C, Liu S, Wang D, Chen Q (2018). Interface engineering of Ru–Co3O4 nanocomposites for enhancing CO oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(23): 11037–11043

[34]

Wang C, Wang D, Yang Y, Li R, Chen C, Chen Q (2016). Enhanced CO oxidation on CeO2/Co3O4 nanojunctions derived from annealing of metal organic frameworks. Nanoscale, 8(47): 19761–19768

[35]

Yang S, Kim J, Tak Y J, Soon A, Lee H (2016). Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angewandte Chemie International Edition, 55(6): 2058–2062

[36]

Yao Y F Y (1984). The oxidation of CO and hydrocarbons over noble metal catalysts. Journal of Catalysis, 87(1): 152–162

[37]

Yin H, Wang C, Zhu H, Overbury S H, Sun S, Dai S (2008). Colloidal deposition synthesis of supported gold nanocatalysts based on Au–Fe3O4 dumbbell nanoparticles. Chemical Communications, 36: 4357–4359

[38]

Zhang C, Liu F, Zhai Y, Ariga H, Yi N, Liu Y, Asakura K, Flytzani-Stephanopoulos M, He H (2012). Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angewandte Chemie International Edition, 51(38): 9628–9632

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (873KB)

Supplementary files

FSE-20016-OF-LZH_suppl_1

3209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/