PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python

Xuying Ma , Ian Longley , Jennifer Salmond , Jay Gao

Front. Environ. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (3) : 44

PDF (2870KB)
Front. Environ. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (3) : 44 DOI: 10.1007/s11783-020-1221-5
RESEARCH ARTICLE
RESEARCH ARTICLE

PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python

Author information +
History +
PDF (2870KB)

Abstract

• PyLUR comprises four modules for developing and applying a LUR model.

• It considers both conventional and novel potential predictor variables.

• GDAL/OGR libraries are used to do spatial analysis in the modeling and prediction.

• Developed on Python platform, PyLUR is rather efficient in data processing.

Land use regression (LUR) models have been widely used in air pollution modeling. This regression-based approach estimates the ambient pollutant concentrations at un-sampled points of interest by considering the relationship between ambient concentrations and several predictor variables selected from the surrounding environment. Although conceptually quite simple, its successful implementation requires detailed knowledge of the area, expertise in GIS, statistics, and programming skills, which makes this modeling approach relatively inaccessible to novice users. In this contribution, we present a LUR modeling and pollution-mapping software named PyLUR. It uses GDAL/OGR libraries based on the Python platform and can build a LUR model and generate pollutant concentration maps efficiently. This self-developed software comprises four modules: a potential predictor variable generation module, a regression modeling module, a model validation module, and a prediction and mapping module. The performance of the newly developed PyLUR is compared to an existing LUR modeling software called RLUR (with similar functions implemented on R language platform) in terms of model accuracy, processing efficiency and software stability. The results show that PyLUR out-performs RLUR for modeling in the Bradford and Auckland case studies examined. Furthermore, PyLUR is much more efficient in data processing and it has a capability to handle detailed GIS input data.

Graphical abstract

Keywords

LUR / Air pollution modelling / GIS spatial analysis / GDAL/OGR Python / Pollutant concentration mapping

Cite this article

Download citation ▾
Xuying Ma, Ian Longley, Jennifer Salmond, Jay Gao. PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python. Front. Environ. Sci. Eng., 2020, 14(3): 44 DOI:10.1007/s11783-020-1221-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akita Y (2014a). LURTools: ArcGIS Toolbox for Land Use Regression (LUR) Model,

[2]

Akita Y, Baldasano J M, Beelen R, Cirach M, De Hoogh K, Hoek G, Nieuwenhuijsen M, Serre M L, De Nazelle A (2014b). Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework. Environmental Science & Technology, 48(8): 4452–4459

[3]

Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, Tsai M Y, Künzli N, Schikowski T, Marcon A, Eriksen K T, Raaschou-Nielsen O, Stephanou E, Patelarou E, Lanki T, Yli-Tuomi T, Declercq C, Falq G, Stempfelet M, Birk M, Cyrys J, von Klot S, Nádor G, Varró M J, Dėdelė A, Gražulevičienė R, Mölter A, Lindley S, Madsen C, Cesaroni G, Ranzi A, Badaloni C, Hoffmann B, Nonnemacher M, Krämer U, Kuhlbusch T, Cirach M, de Nazelle A, Nieuwenhuijsen M, Bellander T, Korek M, Olsson D, Strömgren M, Dons E, Jerrett M, Fischer P, Wang M, Brunekreef B, de Hoogh K (2013). Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe–The ESCAPE project. Atmospheric Environment, 72: 10–23

[4]

Briggs D J, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, Pryl K, Van Reeuwijk H, Smallbone K, Van Der Veen A (1997). Mapping urban air pollution using GIS: A regression-based approach. International Journal of Geographical Information Science, 11(7): 699–718

[5]

European Study of Cohorts for Air Pollution Effects (2010). ESCAPE exposure assessment manual. Available online at

[6]

Hoek G, Beelen R, De Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42(33): 7561–7578

[7]

Keller J P, Olives C, Kim S Y, Sheppard L, Sampson P D, Szpiro A A, Oron A P, Lindström J, Vedal S, Kaufman J D (2015). A unified spatiotemporal modeling approach for predicting concentrations of multiple air pollutants in the multi-ethnic study of atherosclerosis and air pollution. Environmental Health Perspectives, 123(4): 301–309

[8]

Kim J H (2009). Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis, 53(11): 3735–3745

[9]

Kohavi R (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence (IJCAI), 14(2), 1137–1145

[10]

Li S, Zou B, Fang X, Lin Y (2019). Time series modeling of PM2.5 concentrations with residual variance constraint in eastern mainland China during 2013–2017. Science of the Total Environment,

[11]

Liu W, Li X, Chen Z, Zeng G, León T, Liang J, Huang G, Gao Z, Jiao S, He X, Lai M (2015). Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China. Atmospheric Environment, 116: 272–280

[12]

Liu Z, Xie M, Tian K, Gao P (2017). GIS-based analysis of population exposure to PM2.5 air pollution: A case study of Beijing. Journal of Environmental Sciences (China), 59: 48–53

[13]

Ma X, Longley I, Gao J, Kachhara A, Salmond J (2019). A site-optimised multi-scale GIS based land use regression model for simulating local scale patterns in air pollution. Science of the Total Environment, 685: 134–149

[14]

Marcon A, de Hoogh K, Gulliver J, Beelen R, Hansell A L (2015). Development and transferability of a nitrogen dioxide land use regression model within the Veneto region of Italy. Atmospheric Environment, 122: 696–704

[15]

Masiol M, Zíková N, Chalupa D C, Rich D Q, Ferro A R, Hopke P K (2018). Hourly land-use regression models based on low-cost PM monitor data. Environmental Research, 167: 7–14

[16]

Meng X, Chen L, Cai J, Zou B, Wu C F, Fu Q, Zhang Y, Liu Y, Kan H (2015). A land use regression model for estimating the NO2 concentration in Shanghai, China. Environmental Research, 137: 308–315

[17]

Miskell G, Salmond J, Longley I, Dirks K N (2015). A novel approach in quantifying the effect of urban design features on local-scale air pollution in central urban areas. Environmental Science & Technology, 49(15): 9004–9011

[18]

Miskell G, Salmond J A, Williams D E (2018). Use of a handheld low-cost sensor to explore the effect of urban design features on local-scale spatial and temporal air quality variability. Science of the Total Environment, 619-620: 480–490

[19]

Morley D W, Gulliver J (2018). A land use regression variable generation, modelling and prediction tool for air pollution exposure assessment. Environmental Modelling & Software, 105: 17–23

[20]

Muttoo S, Ramsay L, Brunekreef B, Beelen R, Meliefste K, Naidoo R N (2018). Land use regression modelling estimating nitrogen oxides exposure in industrial south Durban, South Africa. Science of the Total Environment, 610-611: 1439–1447

[21]

Open Source Geospatial Foundation (2008). GDAL-OGR: Geospatial Data Abstraction Library/Simple Features Library Software, Available online at

[22]

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12: 2825–2830

[23]

Sanner M F (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17(1): 57–61

[24]

Saucy A, Röösli M, Künzli N, Tsai M Y, Sieber C, Olaniyan T, Baatjies R, Jeebhay M, Davey M, Flückiger B, Naidoo R, Dalvie M, Badpa M, de Hoogh K (2018). Land use regression modelling of outdoor NO2 and PM2.5 concentrations in three low income areas in the Western Cape Province, South Africa. International Journal of Environmental Research and Public Health, 15(7): 1452-1465

[25]

Seabold S, Perktold J (2010). Statsmodels: Econometric and statistical modeling with python. In: Proceedings of the 9th Python in Science Conference, 57, 61

[26]

Weissert L F, Salmond J A, Miskell G, Alavi-Shoshtari M, Williams D E (2018). Development of a microscale land use regression model for predicting NO2 concentrations at a heavy trafficked suburban area in Auckland, NZ. Science of the Total Environment, 619-620: 112–119

[27]

Westra E (2013). Python geospatial development. Birmingham: Packt Publishing Ltd.

[28]

Wu J, Li J, Peng J, Li W, Xu G, Dong C (2015). Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environmental Science and Pollution Research International, 22(9): 7045–7061

[29]

Xu H, Bechle M J, Wang M, Szpiro A A, Vedal S, Bai Y, Marshall J D (2019a). National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging. Science of the Total Environment, 655: 423–433

[30]

Xu S, Zou B, Lin Y, Zhao X, Li S, Hu C (2019b). Strategies of method selection for fine-scale PM2.5 mapping in an intra-urban area using crowdsourced monitoring. Atmospheric Measurement Techniques. 28;12(5):2933–48

[31]

Zhai L, Zou B, Fang X, Luo Y, Wan N, Li S (2016). Land use regression modeling of PM2.5 concentrations at optimized spatial scales. Atmosphere, 8(1): 1–15

[32]

Zou B, Pu Q, Bilal M, Weng Q, Zhai L, Nichol J E (2016). High-resolution satellite map- ping of fine particulates based on geographically weighted regression. IEEE Geoscience and Remote Sensing Letters, 13(4): 495–499

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2870KB)

2013

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/