In situ electron-induced reduction of NOx via CNTs activated by DBD at low temperature
Weixuan Zhao, Liping Lian, Xingpeng Jin, Renxi Zhang, Gang Luo, Huiqi Hou, Shanping Chen, Ruina Zhang
In situ electron-induced reduction of NOx via CNTs activated by DBD at low temperature
• An in situ electron-induced deNOx process with CNT activated by DBD was achieved.
• Carbon atoms on CNT surface were verified to be excited by plasma in DBD-CNT system.
• Reactions between NOx and excited C result in synergistic effect of DBD-CNT system.
In this study, a new in situ electron-induced process is presented with carbon nanotubes (CNTs) as a reduction agent activated by dielectric barrier discharge (DBD) for nitrogen oxide (NOx) abatement at low temperature (<407 K). Compared with a single DBD system and a DBD system with activated carbon (DBD-AC), a DBD system with carbon nanotubes (DBD-CNT) showed a significant promotion of NOx removal efficiency and N2 selectivity. Although the O2 content was 10%, the NOx conversion and N2 selectivity in the DBD-CNT system still reached 64.9% and 81.9% at a specific input energy (SIE) of 1424 J/L, and these values decreased to 16.8%, 31.9% and 43.2%, 62.3% in the single DBD system and the DBD-AC system, respectively. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were utilized to investigate surface changes in the CNTs after activation by DBD to explore the NOx reduction abatement mechanism of this new process. Furthermore, the outlet gas components were also observed via Fourier transform infrared spectroscopy (FTIR) to help reveal the NOx reduction mechanism. Experimental results verified that carbon atoms excited by DBD and the structure of CNTs contributed to the synergistic activity of the DBD-CNT system. The new deNOx process was accomplished through in situ heterogenetic reduction reactions between the NOx and carbon atoms activated by the plasma on the CNTs. In addition, further results indicated that the new deNOx process exhibited acceptable SO2 tolerance and water resistance.
[1] |
Ago H, Kugler T, Cacialli F, Salaneck W R, Shaffer M S, Windle A H, Friend R H (1999). Work functions and surface functional groups of multiwall carbon nanotubes. Journal of Physical Chemistry B, 103(38): 8116–8121
CrossRef
Google scholar
|
[2] |
Atkinson R, Baulch D L, Cox R A, Hampson R F Jr, Kerr J A, Rossi M J, Troe J (2000). Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VIII, halogen species evaluation for atmospheric chemistry. Journal of Physical and Chemical Reference Data, 29(2): 167–266
CrossRef
Google scholar
|
[3] |
Campbell I M, Gray C N (1973). Rate constants for O(3P) recombination and association with N(4S). Chemical Physics Letters, 18(4): 607–609
CrossRef
Google scholar
|
[4] |
Chen I H, Wang C C, Chen C Y (2010). Preparation of carbon nanotube (CNT) composites by polymer functionalized CNT under plasma treatment. Plasma Processes and Polymers, 7(1): 59–63
CrossRef
Google scholar
|
[5] |
Chen J X, Pan K L, Yu S J, Yen S Y, Chang M B (2017). Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal. Environmental Science and Pollution Research International, 24(26): 21496–21508
CrossRef
Pubmed
Google scholar
|
[6] |
Cho B K, Lee J H, Crellin C C, Olson K L, Hilden D L, Kim M K, Kim P S, Heo I, Oh S H, Nam I S (2012). Selective catalytic reduction of NOx by diesel fuel: Plasma-assisted HC/SCR system. Catalysis Today, 191(1): 20–24
CrossRef
Google scholar
|
[7] |
Devahasdin S, Fan C Jr, Li K, Chen D H (2003). TiO2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics. Journal of Photochemistry and Photobiology A Chemistry, 156(1–3): 161–170
CrossRef
Google scholar
|
[8] |
Fang N, Guo J, Shu S, Luo H, Chu Y, Li J (2017). Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR. Chemical Engineering Journal, 325: 114–123
CrossRef
Google scholar
|
[9] |
Felten A, Bittencourt C, Pireaux J J, Van Lier G, Charlier J C (2005). Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. Journal of Applied Physics, 98(7): 074308
CrossRef
Google scholar
|
[10] |
Forzatti P (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A-General, 222(1–2): 221–236
CrossRef
Google scholar
|
[11] |
Geppert W D, Reignier D, Stoecklin T, Naulin C, Costes M, Chastaing D, Le Picard S D, Sims I R, Smith I W M (2000). Comparison of the cross-sections and thermal rate constants for the reactions of C(3PJ) atoms with O2 and NO. Physical Chemistry Chemical Physics, 2(13): 2873–2881
CrossRef
Google scholar
|
[12] |
Hao X, Wang G, Chen S, Yu H, Quan X (2019). Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 13(5): 77
CrossRef
Google scholar
|
[13] |
He C, Xu B, Jiang Z, Xu Y, Zhao J, Pan H (2015). Simultaneous removal of CO, NOx, and HC emitted from gasoline engine in a nonthermal plasma-driven catalysis system. Asia-Pacific Journal of Chemical Engineering, 10(4): 633–640
CrossRef
Google scholar
|
[14] |
He H, Yu Y (2005). Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test. Catalysis Today, 100(1–2): 37–47
CrossRef
Google scholar
|
[15] |
Hu X, Zhao G B, Zhang J J, Wang L, Radosz M (2004). Nonthermal-plasma reactions of dilute nitrogen oxide mixtures: NOx-in-argon and NOx+CO-in-argon. Industrial & Engineering Chemistry Research, 43(23): 7456–7464
CrossRef
Google scholar
|
[16] |
Jacobs C B, Peairs M J, Venton B J (2010). Review: Carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta, 662(2): 105–127
CrossRef
Pubmed
Google scholar
|
[17] |
Kang M, Park E D, Kim J M, Yie J E (2007). Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A-General, 327(2): 261–269
CrossRef
Google scholar
|
[18] |
Kim Y J, Kwon H J, Heo I, Nam I S, Cho B K, Choung J W, Cha M S, Yeo G K (2012). Mn–Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust. Applied Catalysis B: Environmental, 126: 9–21
CrossRef
Google scholar
|
[19] |
Klvana D, Kirchnerová J, Tofan C (1999). Catalytic decomposition of nitric oxide by perovskites. Korean Journal of Chemical Engineering, 16(4): 470–477
CrossRef
Google scholar
|
[20] |
Liese T, Loffler E, Grunert W (2001). Selective catalytic reduction of NO by methane over CeO2–zeolite catalysts-active sites and reaction steps. Journal of Catalysis, 197(1): 123–130
CrossRef
Google scholar
|
[21] |
Mick H J, Burmeister M, Roth P (1993). Atomic resonance absorption spectroscopy measurements on high-temperature CO dissociation kinetics. AIAA Journal, 31(4): 671–676
CrossRef
Google scholar
|
[22] |
Miessner H, Francke K P, Rudolph R (2002). Plasma-enhanced HC-SCR of NOx in the presence of excess oxygen. Applied Catalysis B: Environmental, 36(1): 53–62
CrossRef
Google scholar
|
[23] |
Mitchell C A, Bahr J L, Arepalli S, Tour J M, Krishnamoorti R (2002). Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules, 35(23): 8825–8830
CrossRef
Google scholar
|
[24] |
Nie Y, Wang J, Zhong K, Wang L, Guan Z (2007). Synergy study for plasma-facilitated C2H4 selective catalytic reduction of NOx over Ag/g-Al2O3 catalyst. IEEE Transactions on Plasma Science, 35(3): 663–669
CrossRef
Google scholar
|
[25] |
Niu J, Yang X, Zhu A, Shi L, Qi S, Xu Y (2006). Plasma-assisted selective catalytic reduction of NOx by C2H2 over Co-HZSM-5 catalyst. Catalysis Communications, 7(5): 297–301
CrossRef
Google scholar
|
[26] |
Pan H, Guo Y, Jian Y, He C (2015). Synergistic effect of non-thermal plasma on NOx reduction by CH4 over an In/H-BEA catalyst at low temperatures. Energy & Fuels, 29(8): 5282–5289
CrossRef
Google scholar
|
[27] |
Salazar M, Becker R, Grünert W (2015). Hybrid catalysts-an innovative route to improve catalyst performance in the selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 165: 316–327
CrossRef
Google scholar
|
[28] |
Salazar M, Hoffmann S, Singer V, Becker R, Grünert W (2016a). Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3. On the role of fast SCR in the reaction network. Applied Catalysis B: Environmental, 199: 433–438
CrossRef
Google scholar
|
[29] |
Salazar M, Hoffmann S, Tillmann L, Singer V, Becker R, Gr�nert W (2017). Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3: Precipitates and physical mixtures. Applied Catalysis B: Environmental, 218: 793–802
CrossRef
Google scholar
|
[30] |
Salazar M, Hoffmann S, Tkachenko O P, Becker R, Grünert W (2016b). Hybrid catalysts for the selective catalytic reduction of NO by NH3: The influence of component separation on the performance of hybrid systems. Applied Catalysis B: Environmental, 182: 213–219
CrossRef
Google scholar
|
[31] |
Shimizu K, Satsuma A (2006). Selective catalytic reduction of NO over supported silver catalysts--practical and mechanistic aspects. Physical Chemistry Chemical Physics, 8(23): 2677–2695
CrossRef
Pubmed
Google scholar
|
[32] |
Shimizu K, Sugiyama T, Nishamani L S M, Kanamori M (2009). Application of microplasma for NOx removal. IEEE Transactions on Industry Applications, 45(4): 1506–1512
CrossRef
Google scholar
|
[33] |
Show Y, Fukuzumi N (2007). Selective growth of CNT by using triode-type radio frequency plasma chemical vapor deposition method. Diamond and Related Materials, 16(4–7): 1106–1109
CrossRef
Google scholar
|
[34] |
Siaka H, Dujardin C, Moissette A, Granger P (2018). Structural induced effect of potassium on the reactivity of vanadate species in V2O5–WO3/TiO2 SCR-catalyst. Topics in Catalysis, 62(9): 56–62
|
[35] |
Sivakkumar S R, Ko J M, Kim D Y, Kim B C, Wallace G G (2007). Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochimica Acta, 52(25): 7377–7385
CrossRef
Google scholar
|
[36] |
Stere C E, Adress W, Burch R, Chansai S, Goguet A, Graham W G, Rosa F D, Palma V, Hardacre C (2014). Ambient temperature hydrocarbon selective catalytic reduction of NOx using atmospheric pressure nonthermal plasma activation of a Ag/Al2O3 catalyst. American Chemical Society Catalysis, 4(2): 666–673
CrossRef
Google scholar
|
[37] |
Stere C E, Adress W R, Burch R, Chansai S, Goguet A, Graham W G, Hardacre C (2015). Probing a non-thermal plasma activated heterogeneously catalyzed reaction using in situ DRIFTS-MS. ACS Catalysis, 5(2): 956–964
CrossRef
Google scholar
|
[38] |
Sun Q, Zhu A, Yang X, Niu J, Xu Y (2003). Formation of NOx from N2 and O2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure. Chemical Communications (Cambridge, England), 12(12): 1418–1419
CrossRef
Pubmed
Google scholar
|
[39] |
Tian W, Yang H, Fan X, Zhang X (2011). Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. Journal of Hazardous Materials, 188(1–3): 105–109
CrossRef
Pubmed
Google scholar
|
[40] |
Vashist S K, Zheng D, Al-Rubeaan K, Luong J H, Sheu F S (2011). Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnology Advances, 29(2): 169–188
CrossRef
Pubmed
Google scholar
|
[41] |
Vestreng V, Ntziachristos L, Semb A, Reis S, Isaksen I S A, Tarrason L (2008). Evolution of NOx emissions in Europe with focus on road transport control measures. Atmospheric Chemistry and Physics, 8(3): 1503–1520
|
[42] |
Wang H, Li X, Chen P, Chen M, Zheng X (2013). An enhanced plasma-catalytic method for DeNOx in simulated flue gas at room temperature. Chemical Communications (Cambridge, England), 49(81): 9353–9355
CrossRef
Pubmed
Google scholar
|
[43] |
Wang J, Cai Y, Wang J, Zhang L, Li X (2011). Research on the effect of C3H6 on NO conversion rate in a NTP reactor. In: International Conference on Optoelectronics & Image Processing. Warsaw: IEEE
CrossRef
Google scholar
|
[44] |
Wang P, Su S, Xiang J, You H, Cao F, Sun L, Hu S, Zhang Y (2014). Catalytic oxidation of Hg0 by MnOx-CeO2/g-Al2O3 catalyst at low temperatures. Chemosphere, 101: 49–54
CrossRef
Pubmed
Google scholar
|
[45] |
Wang Y, Yu F, Zhu M, Ma C, Zhao D, Wang C (2017). N-doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for oxygen reduction reaction. Journal of Materials Chemistry A, 6(5): 2011–2017
CrossRef
Google scholar
|
[46] |
Yang S, Qi F, Xiong S, Dang H, Liao Y, Wong P K, Li J (2016). MnOx supported on Fe–Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity. Applied Catalysis B: Environmental, 181: 570–580
CrossRef
Google scholar
|
[47] |
Yashnik S A, Ismagilov Z R (2019). Control of the NO–NH3 SCR behavior of Cu-ZSM-5 by variation of the electronic state of copper. Topics in Catalysis, 62(1–4): 179–191
CrossRef
Google scholar
|
[48] |
Zhao L, Li C, Wang Y, Wu H, Gao L, Zhang J, Zeng G (2016). Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO2 modified V2O5–WO3/TiO2 catalyst. Catalysis Science & Technology, 6(15): 6076–6086
CrossRef
Google scholar
|
[49] |
Zhao W, Liu Y, Wei H, Zhang R, Luo G, Hou H, Chen S, Zhang R (2019). NO removal by plasma-enhanced NH3-SCR using methane as an assistant reduction agent at low temperature. Applied Sciences (Basel, Switzerland), 9(13): 2751
CrossRef
Google scholar
|
[50] |
Zhao W, Wang F, Liu Y, Zhang R, Hou H (2018). Effects of electrode structure and electron energy on abatement of NO in dielectric barrier discharge reactor. Applied Sciences (Basel, Switzerland), 8(4): 618
CrossRef
Google scholar
|
/
〈 | 〉 |