Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal
Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen
Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal
Addition of alkali to pH 10 is effective for precipitation of precipitable metals.
Fenton treatment is effective for substantial removal of Tl, Cd, Cu, Pb, and Zn.
Sulfide precipitation is a final step for removal of trace Tl, Cd, Cu, Pb, and Zn.
Bench and pilot studies demonstrated the effectiveness of this combined technique.
Thallium (Tl) in industrial wastewater is a public health concern due to its extremely high toxicity. However, there has been limited research regarding Tl removal techniques and engineering practices to date. In this investigation, bench and pilot studies on advanced treatment of industrial wastewater to remove Tl to a trace level were conducted. The treatment process involved a combination of hydroxide precipitation, Fenton oxidation, and sulfide precipitation. While hydroxide precipitation was ineffective for Tl+ removal, it enabled the recovery of approximately 70%–80% of Zn as Zn hydroxide in alkaline conditions. The Fenton process provided good Tl removal (>95%) through oxidation and precipitation. Tl was then removed to trace levels (<1.0 µg/L) via sulfide precipitation. Effective removal of other heavy metals was also achieved, with Cd<13.4 µg/L, Cu<39.6 µg/L, Pb<5.32 µg/L, and Zn<357 µg/L detected in the effluent. X-ray photoelectron spectroscopy indicated that Tl2S precipitate formed due to sulfide precipitation. Other heavy metals were removed via the formation of metal hydroxides during hydroxide precipitation and Fenton treatment, as well as via the formation of metal sulfides during sulfide precipitation. This combined process provides a scalable approach for the in-depth removal of Tl and other heavy metals from industrial wastewater.
Thallium / Pilot / Fenton / Sulfide precipitation / Heavy metal / Industrial wastewater
[1] |
Alalwan H A, Abbas M N, Abudi Z N, Alminshid A H (2018). Adsorption of thallium ion (Tl+3) from aqueous solutions by rice husk in a fixed-bed column: Experiment and prediction of breakthrough curves. Environmental Technology & Innovation, 12: 1–13
CrossRef
Google scholar
|
[2] |
Birungi Z S, Chirwa E M (2015). The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. Journal of Hazardous Materials, 299: 67–77
CrossRef
Pubmed
Google scholar
|
[3] |
Campanella B, Onor M, D’Ulivo A, Giannecchini R, D’Orazio M, Petrini R, Bramanti E (2016). Human exposure to thallium through tap water: A study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy). Science of the Total Environment, 548– 549: 33–42
CrossRef
Pubmed
Google scholar
|
[4] |
Chen J, Wu X J, Yin L, Li B, Hong X, Fan Z, Chen B, Xue C, Zhang H (2015). One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angewandte Chemie International Edition, 54(4): 1210–1214
CrossRef
Pubmed
Google scholar
|
[5] |
Coetzee P, Fischer J, Hu M (2004). Simultaneous separation and determination of Tl (I) and Tl (III) by IC–ICP-OES and IC–ICP-MS. Water S A, 29(1): 17–22
CrossRef
Google scholar
|
[6] |
Coup K M, Swedlund P J (2015). Demystifying the interfacial aquatic geochemistry of thallium (I): New and old data reveal just a regular cation. Chemical Geology, 398: 97–103
CrossRef
Google scholar
|
[7] |
Dou B, Jiang X, Wang X, Tang L, Du Z (2017). Synthesis and photoelectric properties of cadmium hydroxide and cadmium hydroxide/cadmium sulphide ultrafine nanowires. Physica B, Condensed Matter, 516: 72–76
CrossRef
Google scholar
|
[8] |
Fu F, Wang Q (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3): 407–418
CrossRef
Pubmed
Google scholar
|
[9] |
Hota G, Idage S B, Khilar K C (2007). Characterization of nano-sized CdS–Ag2S core-shell nanoparticles using XPS technique. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 293(1–3): 5–12
CrossRef
Google scholar
|
[10] |
Huang X, Li N, Wu Q, Long J, Luo D, Zhang P, Yao Y, Huang X, Li D, Lu Y, Liang J (2016). Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage. Environmental Science and Pollution Research International, 23(24): 24912–24921
CrossRef
Pubmed
Google scholar
|
[11] |
Huangfu X, Jiang J, Lu X, Wang Y, Liu Y, Pang S Y, Cheng H, Zhang X, Ma J (2015). Adsorption and oxidation of thallium(I) by a nanosized manganese dioxide. Water, Air, and Soil Pollution, 226(1): 2272–2280
CrossRef
Google scholar
|
[12] |
Huangfu X, Ma C, Ma J, He Q, Yang C, Jiang J, Wang Y, Wu Z (2017a). Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide. Chemosphere, 168: 264–271
CrossRef
Pubmed
Google scholar
|
[13] |
Huangfu X, Ma C, Ma J, He Q, Yang C, Zhou J, Jiang J, Wang Y (2017b). Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration. Chemosphere, 189: 1–9
CrossRef
Pubmed
Google scholar
|
[14] |
Karlsson U, Karlsson S, Düker A (2006). The effect of light and iron(II)/iron(III) on the distribution of Tl(I)/Tl(III) in fresh water systems. Journal of Environmental Monitoring, 8(6): 634–640
CrossRef
Pubmed
Google scholar
|
[15] |
Kikuchi E, Itoh K, Fujishima A, Yonezawa T, Kimura T (1990). Removal of thallium from waste water by using the iron metal and hydrogen peroxide. Chemistry Letters, 19(2): 253–254
CrossRef
Google scholar
|
[16] |
Kiran M G, Pakshirajan K, Das G (2018). Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal loading conditions. Frontiers of Environmental Science & Engineering, 12(4): 12
CrossRef
Google scholar
|
[17] |
Lewis A E (2010). Review of metal sulphide precipitation. Hydrometallurgy, 104(2): 222–234
CrossRef
Google scholar
|
[18] |
Li H, Chen Y, Long J, Jiang D, Liu J, Li S, Qi J, Zhang P, Wang J, Gong J, Wu Q, Chen D (2017a). Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. Journal of Hazardous Materials, 333: 179–185
CrossRef
Pubmed
Google scholar
|
[19] |
Li H, Chen Y, Long J, Li X, Jiang D, Zhang P, Qi J, Huang X, Liu J, Xu R, Gong J (2017b). Removal of thallium from aqueous solutions using Fe-Mn binary oxides. Journal of Hazardous Materials, 338: 296–305
CrossRef
Pubmed
Google scholar
|
[20] |
Li H, Li X, Xiao T, Chen Y, Long J, Zhang G, Zhang P, Li C, Zhuang L, Li K (2018a). Efficient removal of thallium(I) from wastewater using flower-like manganese dioxide coated magnetic pyrite cinder. Chemical Engineering Journal, 353: 867–877
CrossRef
Google scholar
|
[27] |
Li H, Li X, Long J, Li K, Chen Y, Jiang J, Chen X, Zhang P (2019). Oxidation and removal of thllium and organics from wastewater using a zero-valent-iron-based Fenton-like technique. Journal of Cleaner Production, 221: 89–97
CrossRef
Google scholar
|
[21] |
Li H, Long J, Li X, Li K, Xu L, Lai J, Chen Y, Zhang P (2018b). Aqueous biphasic separation of thallium from aqueous solution using alcohols and salts. Desalination and Water Treatment, 123: 330–337
CrossRef
Google scholar
|
[22] |
Li H, Zhou S, Sun Y, Lv J (2010). Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton’s reagent. Waste Management (New York, N.Y.), 30(11): 2122–2129
CrossRef
Pubmed
Google scholar
|
[23] |
Li H S, Li X W, Chen Y H, Long J Y, Zhang G S, Xiao T F, Zhang P, Li C L, Zhuang L Z, Huang W Y (2018c). Removal and recovery of thallium from aqueous solutions via a magnetite-mediated reversible adsorption-desorption process. Journal of Cleaner Production, 199: 705–715
CrossRef
Google scholar
|
[24] |
Li K, Li H, Xiao T, Zhang G, Long J, Luo D, Zhang H, Xiong J, Wang Q (2018d). Removal of thallium from wastewater by a combination of persulfate oxidation and iron coagulation. Process Safety and Environmental Protection, 119: 340–349
CrossRef
Google scholar
|
[25] |
Li X J, Tang D L, Tang F, Zhu Y Y, He C F, Liu M H, Lin C X, Liu Y F (2014). Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe2O4 nanocomposites. Materials Research Bulletin, 56: 125–133
CrossRef
Google scholar
|
[26] |
Li Y, Zhang B, Borthwick A G L, Long Y (2016). Efficient electrochemical oxidation of thallium (I) in groundwater using boron-doped diamond anode. Electrochimica Acta, 222: 1137–1143
CrossRef
Google scholar
|
[28] |
Liu H, Wang C, Li X, Xuan X, Jiang C, Cui H (2007). A novel electro-fenton process for water treatment: Reaction-controlled pH adjustment and performance assessment. Environmental Science & Technology, 41(8): 2937–2942
CrossRef
Pubmed
Google scholar
|
[29] |
Lu S, Wang N, Wang C (2018). Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2. Frontiers of Environmental Science & Engineering, 12(3): 12
CrossRef
Google scholar
|
[30] |
Martin L A, Wissocq A, Benedetti M F, Latrille C (2018). Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochimica et Cosmochimica Acta, 230: 1–16
CrossRef
Google scholar
|
[31] |
Memon S Q, Memon N, Solangi A R, Memon J U R (2008). Sawdust: A green and economical sorbent for thallium removal. Chemical Engineering Journal, 140(1–3): 235–240
CrossRef
Google scholar
|
[32] |
Merck K (2009). LabTools: Tables for Laboratory Use. Darmstadt, Germany: EMD Millipore
|
[33] |
Nriagu J O (1998). Thallium in the Environment. New York: John Wiley & Sons
|
[34] |
Peter A L, Viraraghavan T (2005). Thallium: A review of public health and environmental concerns. Environment International, 31(4): 493–501
CrossRef
Pubmed
Google scholar
|
[35] |
Pignatello J J, Oliveros E, Mackay A (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36(1): 1–84
CrossRef
Google scholar
|
[36] |
Pu Y, Yang X, Zheng H, Wang D, Su Y, He J (2013). Adsorption and desorption of thallium (I) on multiwalled carbon nanotubes. Chemical Engineering Journal, 219: 403–410
CrossRef
Google scholar
|
[37] |
Qi J Y, Chen Y H, Li X P, Zhang Y M, Wang C L, Cao T H, Jiang W W, Lu W Z, Chen X Y, Chen Y L (2017). Emission Standard of Thallium for Industry Wastewater. Guangzhou: Department of Environmental Protection of Guangdong Province, China, Adminstration of Quality and Technology Supervision of Guangdong Province
|
[38] |
Rajesh N, Subramanian M S (2006). A study of the extraction behavior of thallium with tribenzylamine as the extractant. Journal of Hazardous Materials, 135(1–3): 74–77
CrossRef
Pubmed
Google scholar
|
[39] |
Rickwood C J, King M, Huntsman-Mapila P (2015). Assessing the fate and toxicity of Thallium I and Thallium III to three aquatic organisms. Ecotoxicology and Environmental Safety, 115: 300– 308
CrossRef
Pubmed
Google scholar
|
[40] |
Rosengrant L, Craig R (1990). Final best demonstrated available technology (BDAT) background document for P and U thallium wastes. In: US EPA editor. EPA/530-sw-90–059R, National Technical Information Services PB90–234188l. Washington, DC: US EPA, Office of Solid Waste
|
[41] |
Rostamnezhad N, Kahforoushan D, Sahraei E, Ghanbarian S, Shabani M (2016). A method for the removal of Cu(II) from aqueous solutions by sulfide precipitation employing heavy oil fly ash. Desalination and Water Treatment, 57(37): 17593–17602
|
[42] |
Şenol Z M, Ulusoy U (2010). Thallium adsorption onto polyacryamide-aluminosilicate composites: A Tl isotope tracer study. Chemical Engineering Journal, 162(1): 97–105
CrossRef
Google scholar
|
[43] |
Sinyakova M A, Semenova E A, Gamuletskaya O A (2014). Ion exchange of copper(II), lanthanum(III), thallium(I), and mercury(II) on the “polysurmin” substance. Russian Journal of General Chemistry, 84(13): 2516–2520
CrossRef
Google scholar
|
[44] |
Tatsi K, Turner A, Handy R D, Shaw B J (2015). The acute toxicity of thallium to freshwater organisms: Implications for risk assessment. Science of the Total Environment, 536: 382–390
CrossRef
Pubmed
Google scholar
|
[45] |
Thomas J E, Jones C F, Skinner W M, Smart R S C (1998). The role of surface sulfur species in the inhibition of pyrrhotite dissolution in acid conditions. Geochimica et Cosmochimica Acta, 62(9): 1555–1565
CrossRef
Google scholar
|
[46] |
Twidwell L G, Williams-Beam C (2002). Potential technologies for removing thallium from mine and process wastewater: an annotation of the literature. European Journal of Mineral Processing and Environmental Protection, 2(1): 1–10
|
[47] |
Vaněk A, Grösslová Z, Mihaljevič M, Trubač J, Ettler V, Teper L, Cabala J, Rohovec J, Zádorová T, Penížek V, Pavlů L, Holubík O, Němeček K, Houška J, Drábek O, Ash C (2016). Isotopic tracing of thallium contamination in soils affected by emissions from coal-fired power plants. Environmental Science & Technology, 50(18): 9864–9871
CrossRef
Pubmed
Google scholar
|
[48] |
Vink B (1993). The behaviour of thallium in the (sub) surface environment in terms of Eh and pH. Chemical Geology, 109(1–4): 119–123
CrossRef
Google scholar
|
[49] |
Voegelin A, Pfenninger N, Petrikis J, Majzlan J, Plötze M, Senn A C, Mangold S, Steininger R, Göttlicher J (2015). Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock. Environmental Science & Technology, 49(9): 5390–5398
CrossRef
Pubmed
Google scholar
|
[50] |
Wan S, Ma M, Lv L, Qian L, Xu S, Xue Y, Ma Z (2014). Selective capture of thallium (I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chemical Engineering Journal, 239: 200–206
CrossRef
Google scholar
|
[51] |
Wang Z, Zhang B, Jiang Y, Li Y, He C (2018). Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells. Applied Energy, 209: 33–42
CrossRef
Google scholar
|
[52] |
Wick S, Baeyens B, Marques Fernandes M, Voegelin A (2018). Thallium adsorption onto illite. Environmental Science & Technology, 52(2): 571–580
CrossRef
Pubmed
Google scholar
|
[53] |
Xiao T, Yang F, Li S, Zheng B, Ning Z (2012). Thallium pollution in China: A geo-environmental perspective. Science of the Total Environment, 421– 422: 51–58
CrossRef
Pubmed
Google scholar
|
[54] |
Xu J, Long Y, Shen D, Feng H, Chen T (2017). Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates. Journal of Hazardous Materials, 323(B): 674–680
|
[55] |
Young K, Smith E, Eddy M, James T (1991). XPS study of thallium oxidation states in precursor TlBaCaCuO HTSC thin films. Applied Surface Science, 52(1–2): 85–89
CrossRef
Google scholar
|
[56] |
Yu L, Chen W, Li D, Wang J, Shao Y, He M, Wang P, Zheng X (2015). Inhibition of photocorrosion and photoactivity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure. Applied Catalysis B: Environmental, 164: 453–461
CrossRef
Google scholar
|
[57] |
Zhang H, Li H, Li M, Luo D, Chen Y, Chen D, Luo H, Chen Z, Li K (2018). Immobilizing metal-resistant sulfate-reducing bacteria for cadmium removal from aqueous qolutions. Polish Journal of Environmental Studies, 27(6): 2851–2859
CrossRef
Google scholar
|
[58] |
Zhang H, Li M, Yang Z, Sun Y, Yan J, Chen D, Chen Y (2017). Isolation of a non-traditional sulfate reducing-bacteria Citrobacter freundii sp. and bioremoval of thallium and sulfate. Ecological Engineering, 102: 397–403
CrossRef
Google scholar
|
[59] |
Zolgharnein J, Asanjarani N, Shariatmanesh T (2011). Removal of thallium(I) from aqueous solution using modified sugar beet pulp. Toxicological and Environmental Chemistry, 93(2): 207–214
CrossRef
Google scholar
|
/
〈 | 〉 |