Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats

Gastón Azziz , Matías Giménez , Héctor Romero , Patricia M. Valdespino-Castillo , Luisa I. Falcón , Lucas A. M. Ruberto , Walter P. Mac Cormack , Silvia Batista

Front. Environ. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (3) : 44

PDF (940KB)
Front. Environ. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (3) : 44 DOI: 10.1007/s11783-019-1128-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats

Author information +
History +
PDF (940KB)

Abstract

• Beta-lactamase genes were found in all samples from distant places in Antarctica.

• Class C beta-lactamase coding genes were the most frequently found.

• Diversity of sequences exceeds that of the beta-lactamases from clinical environment.

Analysis of environmental samples for bacterial antibiotic resistance genes may have different objectives and analysis strategies. In some cases, the purpose was to study diversity and evolution of genes that could be grouped within a mechanism of antibiotic resistance. Different protocols have been designed for detection and confirmation that a functional gene was found. In this study, we present a sequence-based screening of candidate genes encoding beta-lactamases in 14 metagenomes of Antarctic microbial mats. The samples were obtained from different sites, representing diverse biogeographic regions of maritime and continental Antarctica. A protocol was designed based on generation of Hidden Markov Models from the four beta-lactamase classes by Ambler classification, using sequences from the Comprehensive Antibiotic Resistance Database (CARD). The models were used as queries for metagenome analysis and recovered contigs were subsequently annotated using RAST. According to our analysis, 14 metagenomes analyzed contain A, B and C beta-lactamase genes. Class D genes, however, were identified in 11 metagenomes. The most abundant was class C (46.8%), followed by classes B (35.5%), A (14.2%) and D (3.5%). A considerable number of sequences formed clusters which included, in some cases, contigs from different metagenomes. These assemblies are clearly separated from reference clusters, previously identified using CARD beta-lactamase sequences. While bacterial antibiotic resistance is a major challenge of public health worldwide, our results suggest that environmental diversity of beta-lactamase genes is higher than that currently reported, although this should be complemented with gene function analysis.

Graphical abstract

Keywords

Beta-lactamases / Antibiotic resistance coding genes / Metagenomes / Antarctic microbial mats

Cite this article

Download citation ▾
Gastón Azziz, Matías Giménez, Héctor Romero, Patricia M. Valdespino-Castillo, Luisa I. Falcón, Lucas A. M. Ruberto, Walter P. Mac Cormack, Silvia Batista. Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats. Front. Environ. Sci. Eng., 2019, 13(3): 44 DOI:10.1007/s11783-019-1128-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al Bayssari C, Olaitan A O, Dabboussi F, Hamze M, Rolain J M (2015). Emergence of OXA-48-producing Escherichia coli clone ST38 in fowl. Antimicrobial Agents and Chemotherapy, 59(1): 745–746

[2]

Allen H K, Donato J, Wang H H, Cloud-Hansen K A, Davies J, Handelsman J (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nature Reviews. Microbiology, 8(4): 251–259

[3]

Allen H K, Moe L A, Rodbumrer J, Gaarder A, Handelsman J (2009). Functional metagenomics reveals diverse b-lactamases in a remote Alaskan soil. The ISME Journal, 3(2): 243–251

[4]

Aziz R K, Bartels D, Best A A, DeJongh M, Disz T, Edwards R A, Formsma K, Gerdes S, Glass E M, Kubal M, Meyer F, Olsen G J, Olson R, Osterman A L, Overbeek R A, McNeil L K, Paarmann D, Paczian T, Parrello B, Pusch G D, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 9(1): 75–90

[5]

Babic M, Hujer A M, Bonomo R A (2006). What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 9(3): 142–156

[6]

Bennett J W, Chung K T (2001). Alexander Fleming and the discovery of penicillin. Advances in Applied Microbiology, 49: 163–184

[7]

Berglund F, Österlund T, Boulund F, Marathe N P, Larsson D G J, Kristiansson E (2019). Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome, 7(1): 52–66

[8]

Bonnet R (2004). Growing group of extended-spectrum b-lactamases: The CTX-M enzymes. Antimicrobial Agents and Chemotherapy, 48(1): 1–14

[9]

Boolchandani M, D’Souza A W, Dantas G (2019). Sequencing-based methods and resources to study antimicrobial resistance. Nature Reviews. Genetics,

[10]

Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby G A, Kishony R, Kreiswirth B N, Kutter E, Lerner S A, Levy S, Lewis K, Lomovskaya O, Miller J H, Mobashery S, Piddock L J, Projan S, Thomas C M, Tomasz A, Tulkens P M, Walsh T R, Watson J D, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya H I (2011). Tackling antibiotic resistance. Nature Reviews. Microbiology, 9(12): 894–896

[11]

Chen Y P, Lee S H, Chou C H, Tsai H J (2012). Detection of florfenicol resistance genes in Riemerella anatipestifer isolated from ducks and geese. Veterinary Microbiology, 154(3–4): 325–331

[12]

Coudron P E, Moland E S, Thomson K S (2000). Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. Journal of Clinical Microbiology, 38(5): 1791–1796

[13]

Davies J, Davies D (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews : MMBR, 74(3): 417–433

[14]

de Been M, Lanza V F, de Toro M, Scharringa J, Dohmen W, Du Y, Hu J, Lei Y, Li N, Tooming-Klunderud A, Heederik D J, Fluit A C, Bonten M J, Willems R J, de la Cruz F, van Schaik W (2014). Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLOS Genetics, 10(12): e1004776–e1004793

[15]

Evans B A, Amyes S G (2014). OXA b-lactamases. Clinical Microbiology Reviews, 27(2): 241–263PMID:24696435

[16]

Fu L, Niu B, Zhu Z, Wu S, Li W (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England), 28(23): 3150–3152

[17]

Garau G, García-Sáez I, Bebrone C, Anne C, Mercuri P, Galleni M, Frère J M, Dideberg O (2004). Update of the standard numbering scheme for class B b-lactamases. Antimicrobial Agents and Chemotherapy, 48(7): 2347–2349

[18]

Gibson M K, Forsberg K J, Dantas G (2015). Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. The ISME Journal, 9(1): 207–216

[19]

Hall B G, Barlow M (2004). Evolution of the serine b-lactamases: Past, present and future. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 7(2): 111–123 doi:10.1016/j.drup.2004.02.003

[20]

Hall B G, Barlow M (2005). Revised Ambler classification of b-lactamases. The Journal of Antimicrobial Chemotherapy, 55(6): 1050–1051

[21]

Högberg L D, Heddini A, Cars O (2010). The global need for effective antibiotics: Challenges and recent advances. Trends in Pharmacological Sciences, 31(11): 509–515

[22]

Hughes K A, Thompson A (2004). Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers. Environmental Pollution (Barking, Essex: 1987), 127(3): 315–321

[23]

Jacoby G A (2009). AmpC b-lactamases. Clinical Microbiology Reviews, 22(1): 161–182

[24]

Jeong S H, Bae I K, Lee J H, Sohn S G, Kang G H, Jeon G J, Kim Y H, Jeong B C, Lee S H (2004). Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. Journal of Clinical Microbiology, 42(7): 2902–2906

[25]

June C M, Vallier B C, Bonomo R A, Leonard D A, Powers R A (2014). Structural origins of oxacillinase specificity in class D b-lactamases. Antimicrobial Agents and Chemotherapy, 58(1): 333–341

[26]

Lisa M N, Palacios A R, Aitha M, González M M, Moreno D M, Crowder M W, Bonomo R A, Spencer J, Tierney D L, Llarrull L I, Vila A J (2017). A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-b-lactamases. Nature Communications, 8(1): 538–549

[27]

Martínez J L (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887): 365–367

[28]

Naas T, Poirel L, Nordmann P (2008). Minor extended-spectrum b-lactamases. Clinical Microbiology and Infection, 14(Suppl 1): 42–52

[29]

Nesme J, Cécillon S, Delmont T O, Monier J M, Vogel T M, Simonet P (2014). Large-scale metagenomic-based study of antibiotic resistance in the environment. Current Biology: CB, 24(10): 1096–1100

[30]

Peng Y, Leung H C, Yiu S M, Chin F Y (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics (Oxford, England), 28(11): 1420–1428

[31]

Pérez-Pérez F J, Hanson N D (2002). Detection of plasmid-mediated AmpC b-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical Microbiology, 40(6): 2153–2162

[32]

Quince C, Walker A W, Simpson J T, Loman N J, Segata N (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9): 833–844

[33]

Ruppé E, Ghozlane A, Tap J, Pons N, Alvarez A S, Maziers N, Cuesta T, Hernando-Amado S, Clares I, Martínez J L, Coque T M, Baquero F, Lanza V F, Máiz L, Goulenok T, de Lastours V, Amor N, Fantin B, Wieder I, Andremont A, van Schaik W, Rogers M, Zhang X, Willems R J L, de Brevern A G, Batto J M, Blottière H M, Léonard P, Léjard V, Letur A, Levenez F, Weiszer K, Haimet F, Doré J, Kennedy S P, Ehrlich S D (2019). Prediction of the intestinal resistome by a three-dimensional structure-based method. Nature Microbiology, 4(1): 112–123

[34]

Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, Shinbori K, Motoyama H, Kohshima S, Ushida K (2013). Distribution of antibiotic resistance genes in glacier environments. Environmental Microbiology Reports, 5(1): 127–134

[35]

Shaikh S, Fatima J, Shakil S, Rizvi S M D, Kamal M A (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1): 90–101

[36]

Van Goethem M W, Pierneef R, Bezuidt O K I, Van De Peer Y, Cowan D A, Makhalanyane T P (2018). A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6(1): 40–52

[37]

Wallace J C, Port J A, Smith M N, Faustman E M (2017). FARME DB: A functional antibiotic resistance element database. Database (Oxford), 2017: baw165–7

[38]

Wright G D (2010). Antibiotic resistance in the environment: A link to the clinic? Current Opinion in Microbiology, 13(5): 589–594

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (940KB)

Supplementary files

FSE-19040-OF-AG_suppl_1

1407

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/