Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats

Gastón Azziz, Matías Giménez, Héctor Romero, Patricia M. Valdespino-Castillo, Luisa I. Falcón, Lucas A. M. Ruberto, Walter P. Mac Cormack, Silvia Batista

PDF(940 KB)
PDF(940 KB)
Front. Environ. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (3) : 44. DOI: 10.1007/s11783-019-1128-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats

Author information +
History +

Highlights

• Beta-lactamase genes were found in all samples from distant places in Antarctica.

• Class C beta-lactamase coding genes were the most frequently found.

• Diversity of sequences exceeds that of the beta-lactamases from clinical environment.

Abstract

Analysis of environmental samples for bacterial antibiotic resistance genes may have different objectives and analysis strategies. In some cases, the purpose was to study diversity and evolution of genes that could be grouped within a mechanism of antibiotic resistance. Different protocols have been designed for detection and confirmation that a functional gene was found. In this study, we present a sequence-based screening of candidate genes encoding beta-lactamases in 14 metagenomes of Antarctic microbial mats. The samples were obtained from different sites, representing diverse biogeographic regions of maritime and continental Antarctica. A protocol was designed based on generation of Hidden Markov Models from the four beta-lactamase classes by Ambler classification, using sequences from the Comprehensive Antibiotic Resistance Database (CARD). The models were used as queries for metagenome analysis and recovered contigs were subsequently annotated using RAST. According to our analysis, 14 metagenomes analyzed contain A, B and C beta-lactamase genes. Class D genes, however, were identified in 11 metagenomes. The most abundant was class C (46.8%), followed by classes B (35.5%), A (14.2%) and D (3.5%). A considerable number of sequences formed clusters which included, in some cases, contigs from different metagenomes. These assemblies are clearly separated from reference clusters, previously identified using CARD beta-lactamase sequences. While bacterial antibiotic resistance is a major challenge of public health worldwide, our results suggest that environmental diversity of beta-lactamase genes is higher than that currently reported, although this should be complemented with gene function analysis.

Graphical abstract

Keywords

Beta-lactamases / Antibiotic resistance coding genes / Metagenomes / Antarctic microbial mats

Cite this article

Download citation ▾
Gastón Azziz, Matías Giménez, Héctor Romero, Patricia M. Valdespino-Castillo, Luisa I. Falcón, Lucas A. M. Ruberto, Walter P. Mac Cormack, Silvia Batista. Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats. Front. Environ. Sci. Eng., 2019, 13(3): 44 https://doi.org/10.1007/s11783-019-1128-1

References

[1]
Al Bayssari C, Olaitan A O, Dabboussi F, Hamze M, Rolain J M (2015). Emergence of OXA-48-producing Escherichia coli clone ST38 in fowl. Antimicrobial Agents and Chemotherapy, 59(1): 745–746
CrossRef Pubmed Google scholar
[2]
Allen H K, Donato J, Wang H H, Cloud-Hansen K A, Davies J, Handelsman J (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nature Reviews. Microbiology, 8(4): 251–259
CrossRef Pubmed Google scholar
[3]
Allen H K, Moe L A, Rodbumrer J, Gaarder A, Handelsman J (2009). Functional metagenomics reveals diverse b-lactamases in a remote Alaskan soil. The ISME Journal, 3(2): 243–251
CrossRef Pubmed Google scholar
[4]
Aziz R K, Bartels D, Best A A, DeJongh M, Disz T, Edwards R A, Formsma K, Gerdes S, Glass E M, Kubal M, Meyer F, Olsen G J, Olson R, Osterman A L, Overbeek R A, McNeil L K, Paarmann D, Paczian T, Parrello B, Pusch G D, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 9(1): 75–90
CrossRef Pubmed Google scholar
[5]
Babic M, Hujer A M, Bonomo R A (2006). What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 9(3): 142–156
CrossRef Pubmed Google scholar
[6]
Bennett J W, Chung K T (2001). Alexander Fleming and the discovery of penicillin. Advances in Applied Microbiology, 49: 163–184
CrossRef Pubmed Google scholar
[7]
Berglund F, Österlund T, Boulund F, Marathe N P, Larsson D G J, Kristiansson E (2019). Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome, 7(1): 52–66
CrossRef Pubmed Google scholar
[8]
Bonnet R (2004). Growing group of extended-spectrum b-lactamases: The CTX-M enzymes. Antimicrobial Agents and Chemotherapy, 48(1): 1–14
CrossRef Pubmed Google scholar
[9]
Boolchandani M, D’Souza A W, Dantas G (2019). Sequencing-based methods and resources to study antimicrobial resistance. Nature Reviews. Genetics,
CrossRef Pubmed Google scholar
[10]
Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby G A, Kishony R, Kreiswirth B N, Kutter E, Lerner S A, Levy S, Lewis K, Lomovskaya O, Miller J H, Mobashery S, Piddock L J, Projan S, Thomas C M, Tomasz A, Tulkens P M, Walsh T R, Watson J D, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya H I (2011). Tackling antibiotic resistance. Nature Reviews. Microbiology, 9(12): 894–896
CrossRef Pubmed Google scholar
[11]
Chen Y P, Lee S H, Chou C H, Tsai H J (2012). Detection of florfenicol resistance genes in Riemerella anatipestifer isolated from ducks and geese. Veterinary Microbiology, 154(3–4): 325–331
CrossRef Pubmed Google scholar
[12]
Coudron P E, Moland E S, Thomson K S (2000). Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. Journal of Clinical Microbiology, 38(5): 1791–1796
Pubmed
[13]
Davies J, Davies D (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews : MMBR, 74(3): 417–433
CrossRef Pubmed Google scholar
[14]
de Been M, Lanza V F, de Toro M, Scharringa J, Dohmen W, Du Y, Hu J, Lei Y, Li N, Tooming-Klunderud A, Heederik D J, Fluit A C, Bonten M J, Willems R J, de la Cruz F, van Schaik W (2014). Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLOS Genetics, 10(12): e1004776–e1004793
CrossRef Pubmed Google scholar
[15]
Evans B A, Amyes S G (2014). OXA b-lactamases. Clinical Microbiology Reviews, 27(2): 241–263PMID:24696435
CrossRef Google scholar
[16]
Fu L, Niu B, Zhu Z, Wu S, Li W (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England), 28(23): 3150–3152
CrossRef Pubmed Google scholar
[17]
Garau G, García-Sáez I, Bebrone C, Anne C, Mercuri P, Galleni M, Frère J M, Dideberg O (2004). Update of the standard numbering scheme for class B b-lactamases. Antimicrobial Agents and Chemotherapy, 48(7): 2347–2349
CrossRef Pubmed Google scholar
[18]
Gibson M K, Forsberg K J, Dantas G (2015). Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. The ISME Journal, 9(1): 207–216
CrossRef Pubmed Google scholar
[19]
Hall B G, Barlow M (2004). Evolution of the serine b-lactamases: Past, present and future. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 7(2): 111–123 doi:10.1016/j.drup.2004.02.003
Pubmed
[20]
Hall B G, Barlow M (2005). Revised Ambler classification of b-lactamases. The Journal of Antimicrobial Chemotherapy, 55(6): 1050–1051
CrossRef Pubmed Google scholar
[21]
Högberg L D, Heddini A, Cars O (2010). The global need for effective antibiotics: Challenges and recent advances. Trends in Pharmacological Sciences, 31(11): 509–515
CrossRef Pubmed Google scholar
[22]
Hughes K A, Thompson A (2004). Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers. Environmental Pollution (Barking, Essex: 1987), 127(3): 315–321
CrossRef Pubmed Google scholar
[23]
Jacoby G A (2009). AmpC b-lactamases. Clinical Microbiology Reviews, 22(1): 161–182
CrossRef Pubmed Google scholar
[24]
Jeong S H, Bae I K, Lee J H, Sohn S G, Kang G H, Jeon G J, Kim Y H, Jeong B C, Lee S H (2004). Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. Journal of Clinical Microbiology, 42(7): 2902–2906
CrossRef Pubmed Google scholar
[25]
June C M, Vallier B C, Bonomo R A, Leonard D A, Powers R A (2014). Structural origins of oxacillinase specificity in class D b-lactamases. Antimicrobial Agents and Chemotherapy, 58(1): 333–341
CrossRef Pubmed Google scholar
[26]
Lisa M N, Palacios A R, Aitha M, González M M, Moreno D M, Crowder M W, Bonomo R A, Spencer J, Tierney D L, Llarrull L I, Vila A J (2017). A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-b-lactamases. Nature Communications, 8(1): 538–549
CrossRef Pubmed Google scholar
[27]
Martínez J L (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887): 365–367
CrossRef Pubmed Google scholar
[28]
Naas T, Poirel L, Nordmann P (2008). Minor extended-spectrum b-lactamases. Clinical Microbiology and Infection, 14(Suppl 1): 42–52
CrossRef Pubmed Google scholar
[29]
Nesme J, Cécillon S, Delmont T O, Monier J M, Vogel T M, Simonet P (2014). Large-scale metagenomic-based study of antibiotic resistance in the environment. Current Biology: CB, 24(10): 1096–1100
CrossRef Pubmed Google scholar
[30]
Peng Y, Leung H C, Yiu S M, Chin F Y (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics (Oxford, England), 28(11): 1420–1428
CrossRef Pubmed Google scholar
[31]
Pérez-Pérez F J, Hanson N D (2002). Detection of plasmid-mediated AmpC b-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical Microbiology, 40(6): 2153–2162
CrossRef Pubmed Google scholar
[32]
Quince C, Walker A W, Simpson J T, Loman N J, Segata N (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9): 833–844
CrossRef Pubmed Google scholar
[33]
Ruppé E, Ghozlane A, Tap J, Pons N, Alvarez A S, Maziers N, Cuesta T, Hernando-Amado S, Clares I, Martínez J L, Coque T M, Baquero F, Lanza V F, Máiz L, Goulenok T, de Lastours V, Amor N, Fantin B, Wieder I, Andremont A, van Schaik W, Rogers M, Zhang X, Willems R J L, de Brevern A G, Batto J M, Blottière H M, Léonard P, Léjard V, Letur A, Levenez F, Weiszer K, Haimet F, Doré J, Kennedy S P, Ehrlich S D (2019). Prediction of the intestinal resistome by a three-dimensional structure-based method. Nature Microbiology, 4(1): 112–123
CrossRef Pubmed Google scholar
[34]
Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, Shinbori K, Motoyama H, Kohshima S, Ushida K (2013). Distribution of antibiotic resistance genes in glacier environments. Environmental Microbiology Reports, 5(1): 127–134
CrossRef Pubmed Google scholar
[35]
Shaikh S, Fatima J, Shakil S, Rizvi S M D, Kamal M A (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1): 90–101
CrossRef Pubmed Google scholar
[36]
Van Goethem M W, Pierneef R, Bezuidt O K I, Van De Peer Y, Cowan D A, Makhalanyane T P (2018). A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6(1): 40–52
CrossRef Pubmed Google scholar
[37]
Wallace J C, Port J A, Smith M N, Faustman E M (2017). FARME DB: A functional antibiotic resistance element database. Database (Oxford), 2017: baw165–7
CrossRef Pubmed Google scholar
[38]
Wright G D (2010). Antibiotic resistance in the environment: A link to the clinic? Current Opinion in Microbiology, 13(5): 589–594
CrossRef Pubmed Google scholar

Acknowledgements

Authors acknowledge the following agencies that were involved in sampling: NSF-USA (Dry Valleys), DNA-Argentina (Peninsula), IAU-Uruguay (Maritime). We also would like to thank Osiris Gaona for technical support and Paul Gill for discussion and technical reading of the manuscript. AMEXCID-Mexico and AUCI-Uruguay supported the study through an international cooperation project (PNUD URU/113). The work was also supported by IAU and PEDECIBA-Biología (Programa de Ciencias Básicas).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-019-1128-1 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(940 KB)

Accesses

Citations

Detail

Sections
Recommended

/