Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar
Kaikai Zhang, Peng Sun, Yanrong Zhang
Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar
PFRs were produced on biochar during Cr(VI) decontamination.
PFRs formation on biochar was owing to the oxidization of phenolic-OH by Cr(VI).
Appearance of excessive oxidant led to the consumption of PFRs on biochar.
Biochar charred at high temperature possessed great performance to Cr(VI) removal.
This study investigated the facilitation of Cr(VI) decontamination to the formation of persistent free radicals (PFRs) on rice husk derived biochar. It was found that Cr(VI) remediation by biochar facilitated the production of PFRs, which increased with the concentration of treated Cr(VI). However, excessive Cr(VI) would induce their decay. Biochar with high pyrolysis temperature possessed great performance to Cr(VI) removal, which was mainly originated from its reduction by biochar from Inductively Coupled Plasma Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy. And the corresponding generation of PFRs on biochar was primarily ascribed to the oxidization of phenolic hydroxyl groups by Cr(VI) from Fourier Transform Infrared Spectroscopy analysis, which was further verified by the H2O2 treatment experiments. The findings of this study will help to illustrate the transformation of reactive functional groups on biochar and provide a new insight into the role of biochar in environmental remediation.
Biochar / Persistent free radicals / Phenolic hydroxyl groups / Cr(VI) reduction
[1] |
Agrafioti E, Kalderis D, Diamadopoulos E (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133: 309–314
CrossRef
Pubmed
Google scholar
|
[2] |
Atkinson C J, Fitzgerald J D, Hipps N A (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant & Soil, 337(1–2): 1–18
CrossRef
Google scholar
|
[3] |
Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, Harris E, Robinson B, Sizmur T (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental pollution, 159(12): 3269–3282
CrossRef
Pubmed
Google scholar
|
[4] |
Betts A R, Chen N, Hamilton J G, Peak D (2013). Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal biochar. Environmental Science & Technology, 47(24): 14350–14357
CrossRef
Pubmed
Google scholar
|
[5] |
Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8): 629–634
CrossRef
Google scholar
|
[6] |
Chen Z, Xiao X, Chen B, Zhu L (2015). Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environmental Science & Technology, 49(1): 309–317
CrossRef
Pubmed
Google scholar
|
[7] |
dela Cruz A L, Cook R L, Dellinger B, Lomnicki S M, Donnelly K C, Kelley M A, Cosgriff D (2014). Assessment of environmentally persistent free radicals in soils and sediments from three Superfund sites. Environmental Science. Processes & Impacts, 16(1): 44–52
CrossRef
Pubmed
Google scholar
|
[8] |
dela Cruz A L, Gehling W, Lomnicki S, Cook R, Dellinger B (2011). Detection of environmentally persistent free radicals at a superfund wood treating site. Environmental Science & Technology, 45(15): 6356–6365
CrossRef
Pubmed
Google scholar
|
[9] |
Dellinger B, Lomnicki S, Khachatryan L, Maskos Z, Hall R W, Adounkpe J, McFerrin C, Truong H (2007). Formation and stabilization of persistent free radicals. Proceedings of the Combustion Institute. International Symposium on Combustion or Proc Combust Inst, 31(1): 521–528
CrossRef
Pubmed
Google scholar
|
[10] |
Dong X, Ma L Q, Gress J, Harris W, Li Y (2014). Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar. Journal of Hazardous Materials, 267: 62–70
CrossRef
Pubmed
Google scholar
|
[11] |
Fang G, Gao J, Liu C, Dionysiou D D, Wang Y, Zhou D (2014). Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environmental Science & Technology, 48(3): 1902–1910
CrossRef
Pubmed
Google scholar
|
[12] |
Gehling W, Dellinger B (2013). Environmentally persistent free radicals and their lifetimes in PM2.5. Environmental Science & Technology, 47(15): 8172–8178
CrossRef
Pubmed
Google scholar
|
[13] |
Gehling W, Khachatryan L, Dellinger B (2014). Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5. Environmental Science & Technology, 48(8): 4266–4272
CrossRef
Pubmed
Google scholar
|
[14] |
Gomez-Eyles J L, Yupanqui C, Beckingham B, Riedel G, Gilmour C, Ghosh U (2013). Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. Environmental Science & Technology, 47(23): 13721–13729
CrossRef
Pubmed
Google scholar
|
[15] |
Hale S E, Lehmann J, Rutherford D, Zimmerman A R, Bachmann R T, Shitumbanuma V, O’Toole A, Sundqvist K L, Arp H P, Cornelissen G (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology, 46(5): 2830–2838
CrossRef
Pubmed
Google scholar
|
[16] |
Jia M, Wang F, Bian Y, Jin X, Song Y, Kengara F O, Xu R, Jiang X (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136: 87–93
CrossRef
Pubmed
Google scholar
|
[17] |
Jiang B, Liu Y, Zheng J, Tan M, Wang Z, Wu M (2015). Synergetic transformations of multiple pollutants driven by Cr(VI)-sulfite reactions. Environmental Science & Technology, 49(20): 12363–12371
CrossRef
Pubmed
Google scholar
|
[18] |
Jiang W, Cai Q, Xu W, Yang M, Cai Y, Dionysiou D D, O’Shea K E (2014). Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science & Technology, 48(14): 8078–8085
CrossRef
Pubmed
Google scholar
|
[19] |
Jin J, Li Y, Zhang J, Wu S, Cao Y, Liang P, Zhang J, Wong M H, Wang M, Shan S, Christie P (2016). Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. Journal of Hazardous Materials, 320: 417–426
CrossRef
Pubmed
Google scholar
|
[20] |
Kelley M A, Hebert V Y, Thibeaux T M, Orchard M A, Hasan F, Cormier S A, Thevenot P T, Lomnicki S M, Varner K J, Dellinger B, Latimer B M, Dugas T R (2013). Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species. Chemical Research in Toxicology, 26(12): 1862–1871
CrossRef
Pubmed
Google scholar
|
[21] |
Khachatryan L, Dellinger B (2011). Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions? Environmental Science & Technology, 45(21): 9232–9239
CrossRef
Pubmed
Google scholar
|
[22] |
Khachatryan L, Vejerano E, Lomnicki S, Dellinger B (2011). Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions. Environmental Science & Technology, 45(19): 8559–8566
CrossRef
Pubmed
Google scholar
|
[23] |
Kiruri L W, Dellinger B, Lomnicki S (2013). Tar balls from Deep Water Horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering. Environmental Science & Technology, 47(9): 4220–4226
CrossRef
Pubmed
Google scholar
|
[24] |
Kiruri L W, Khachatryan L, Dellinger B, Lomnicki S (2014). Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFRs) in particulates. Environmental Science & Technology, 48(4): 2212–2217
CrossRef
Pubmed
Google scholar
|
[25] |
Klüpfel L, Keiluweit M, Kleber M, Sander M (2014). Redox properties of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 48(10): 5601–5611
CrossRef
Pubmed
Google scholar
|
[26] |
Kotaś J, Stasicka Z (2000). Chromium occurrence in the environment and methods of its speciation. Environmental pollution, 107(3): 263–283
CrossRef
Pubmed
Google scholar
|
[27] |
Kumar A, Joseph S, Tsechansky L, Privat K, Schreiter I J, Schüth C, Graber E R (2018). Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. The Science of the total environment, 626: 953–961
CrossRef
Pubmed
Google scholar
|
[28] |
Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D (2011). Biochar effects on soil biota–A review. Soil Biology and Biochemistry, 43(9): 1812–1836
CrossRef
Google scholar
|
[29] |
Li Y, Ruan G, Jalilov A S, Tarkunde Y R, Fei H, Tour J M (2016). Biochar as a renewable source for high-performance CO2 sorbent. Carbon, 107: 344–351
CrossRef
Google scholar
|
[30] |
Lian F, Xing B (2017). Black Carbon (Biochar) In water/soil environments: Molecular structure, sorption, stability, and potential risk. Environmental Science & Technology, 51(23): 13517–13532
CrossRef
Pubmed
Google scholar
|
[31] |
Liu W J, Jiang H, Yu H Q (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115(22): 12251–12285
CrossRef
Pubmed
Google scholar
|
[32] |
Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46(3): 854–862
CrossRef
Pubmed
Google scholar
|
[33] |
Mills C T, Bern C R, Wolf R E, Foster A L, Morrison J M, Benzel W M (2017). Modifications to EPA method 3060A to improve extraction of Cr(VI) from chromium ore processing residue-contaminated soils. Environmental Science & Technology, 51(19): 11235–11243
CrossRef
Pubmed
Google scholar
|
[34] |
Mohan D, Sarswat A, Ok Y S, Pittman C U Jr (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresource Technology, 160: 191–202
CrossRef
Pubmed
Google scholar
|
[35] |
Nwosu U G, Roy A, dela Cruz A L, Dellinger B, Cook R (2016). Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay. Environmental Science. Processes & Impacts, 18(1): 42–50
CrossRef
Pubmed
Google scholar
|
[36] |
Qin Y, Li G, Gao Y, Zhang L, Ok Y S, An T (2018). Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. Water Research, 137: 130–143
CrossRef
Pubmed
Google scholar
|
[37] |
Rawal A, Joseph S D, Hook J M, Chia C H, Munroe P R, Donne S, Lin Y, Phelan D, Mitchell D R, Pace B, Horvat J, Webber J B (2016). Mineral-biochar composites: Molecular structure and porosity. Environmental Science & Technology, 50(14): 7706–7714
CrossRef
Pubmed
Google scholar
|
[38] |
Sun H, Hockaday W C, Masiello C A, Zygourakis K (2012). Multiple controls on the chemical and physical structure of biochars. Industrial & Engineering Chemistry Research, 51(9): 3587–3597
CrossRef
Google scholar
|
[39] |
Thompson K A, Shimabuku K K, Kearns J P, Knappe D R, Summers R S, Cook S M (2016). Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environmental Science & Technology, 50(20): 11253–11262
CrossRef
Pubmed
Google scholar
|
[40] |
Tong X J, Li J Y, Yuan J H, Xu R K (2011). Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2–3): 828–834
CrossRef
Google scholar
|
[41] |
Vejerano E, Lomnicki S, Dellinger B (2012). Lifetime of combustion-generated environmentally persistent free radicals on Zn(II)O and other transition metal oxides. Journal of environmental monitoring, 14(10): 2803–2806M
CrossRef
Pubmed
Google scholar
|
[42] |
Vejerano E P, Rao G, Khachatryan L, Cormier S A, Lomnicki S (2018). Environmentally persistent free radicals: Insights on a new class of pollutants. Environmental Science & Technology, 52(5): 2468–2481
CrossRef
Pubmed
Google scholar
|
[43] |
Wang S, Gao B, Li Y, Ok Y S, Shen C, Xue S (2017). Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa Roxb. (Phytolaccaceae). Chemosphere, 178: 59–64
CrossRef
Pubmed
Google scholar
|
[44] |
Xiao X, Chen B, Zhu L (2014). Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environmental Science & Technology, 48(6): 3411–3419
CrossRef
Pubmed
Google scholar
|
[45] |
Yang J, Pan B, Li H, Liao S, Zhang D, Wu M, Xing B (2016). Degradation of p-Nitrophenol on biochars: Role of persistent free radicals. Environmental Science & Technology, 50(2): 694–700
CrossRef
Pubmed
Google scholar
|
[46] |
Zhang K, Sun P, Faye M C, Zhang Y (2018). Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon, 130: 730–740 doi:10.1016/j.carbon.2018.01.036
|
/
〈 | 〉 |