Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China

Jiajun Liu , Long Wang , Yun Zhu , Che-Jen Lin , Carey Jang , Shuxiao Wang , Jia Xing , Bin Yu , Hui Xu , Yuzhou Pan

Front. Environ. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (1) : 2

PDF (686KB)
Front. Environ. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (1) : 2 DOI: 10.1007/s11783-019-1087-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China

Author information +
History +
PDF (686KB)

Abstract

Estimated anthropogenic Hg emission was 11.9 tons in Pearl River Delta for 2014.

Quantifying contributions of emission sources helps to provide control strategies.

More attentions should be paid to Hg deposition around the large point sources.

Power plant, industrial source and waste incinerator were priorities for control.

A coordinated regional Hg emission control was important for controlling pollution.

We used CMAQ-Hg to simulate mercury pollution and identify main sources in the Pearl River Delta (PRD) with updated local emission inventory and latest regional and global emissions. The total anthropogenic mercury emissions in the PRD for 2014 were 11,939.6 kg. Power plants and industrial boilers were dominant sectors, responsible for 29.4 and 22.7%. We first compared model predictions and observations and the results showed a good performance. Then five scenarios with power plants (PP), municipal solid waste incineration (MSWI), industrial point sources (IP), natural sources (NAT), and boundary conditions (BCs) zeroed out separately were simulated and compared with the base case. BCs was responsible for over 30% of annual average mercury concentration and total deposition while NAT contributed around 15%. Among the anthropogenic sources, IP (22.9%) was dominant with a contribution over 20.0% and PP (18.9%) and MSWI (11.2%) ranked second and third. Results also showed that power plants were the most important emission sources in the central PRD, where the ultra-low emission for thermal power units need to be strengthened. In the northern and western PRD, cement and metal productions were priorities for mercury control. The fast growth of municipal solid waste incineration were also a key factor in the core areas. In addition, a coordinated regional mercury emission control was important for effectively controlling pollution. In the future, mercury emissions will decrease as control measures are strengthened, more attention should be paid to mercury deposition around the large point sources as high levels of pollution are observed.

Graphical abstract

Keywords

Emission inventory / Mercury deposition / Pearl River Delta (PRD) / Source attribution / Control strategy

Cite this article

Download citation ▾
Jiajun Liu, Long Wang, Yun Zhu, Che-Jen Lin, Carey Jang, Shuxiao Wang, Jia Xing, Bin Yu, Hui Xu, Yuzhou Pan. Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China. Front. Environ. Sci. Eng., 2019, 13(1): 2 DOI:10.1007/s11783-019-1087-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bash J O, Bresnahan P, Miller D R (2007). Dynamic surface interface exchanges of mercury: A review and compartmentalized modeling framework. Journal of Applied Meteorology and Climatology, 46(10): 1606–1618

[2]

Bullock O R Jr, Atkinson D, Braverman T, Civerolo K, Dastoor A, Davignon D, Ku J Y, Lohman K, Myers T C, Park R J, Seigneur C, Selin N E, Sistla G, Vijayaraghavan K (2008). The North American Mercury Model Intercomparison Study (NAMMIS): Study description and model-to-model comparisons. Journal of Geophysical Research, D, Atmospheres, 113(D17): 17

[3]

Bullock O R Jr, Atkinson D, Braverman T, Civerolo K, Dastoor A, Davignon D, Ku J Y, Lohman K, Myers T C, Park R J, Seigneur C, Selin N E, Sistla G, Vijayaraghavan K (2009). An analysis of simulated wet deposition of mercury from the North American Mercury Model Intercomparison Study. Journal of Geophysical Research, D, Atmospheres, 114(D8): 12

[4]

Bullock O R Jr, Brehme K A (2002). Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results. Atmospheric Environment, 36(13): 2135–2146

[5]

Chen L, Liu M, Fan R, Ma S, Xu Z, Ren M, He Q (2013). Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China. Science of the Total Environment, 447: 396–402

[6]

Chen L G, Liu M, Xu Z C, Fan R F, Tao J, Chen D H, Zhang D Q, Xie D H, Sun J R (2013). Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta-A highly industrialised region in South China influenced by seasonal monsoons. Atmospheric Environment, 77: 757–766

[7]

Holloway T, Voigt C, Morton J, Spak S N, Rutter A P, Schauer J J (2012). An assessment of atmospheric mercury in the Community Multiscale Air Quality (CMAQ) model at an urban site and a rural site in the Great Lakes Region of North America. Atmospheric Chemistry and Physics, 12(15): 7117–7133

[8]

Holmes C D, Jacob D J, Mason R P, Jaffe D A (2009). Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmospheric Environment, 43(14): 2278–2285

[9]

Hu Y, Cheng H (2016). Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations. Environmental Pollution, 218: 1209–1221

[10]

Huang M, Deng S, Dong H, Dai W, Pang J, Wang X (2016). Impacts of atmospheric mercury deposition on human multimedia exposure: Projection from observations in the Pearl River Delta Region, South China. Environmental Science & Technology, 50(19): 10625–10634

[11]

Keeler G J, Landis M S, Norris G A, Christianson E M, Dvonch J T (2006). Sources of mercury wet deposition in Eastern Ohio, USA. Environmental Science & Technology, 40(19): 5874–5881

[12]

Li Z, Xia C H, Wang X M, Xiang Y R, Xie Z Q (2011). Total gaseous mercury in Pearl River Delta region, China during 2008 winter period. Atmospheric Environment, 45(4): 834–838

[13]

Liang S, Xu M, Liu Z, Suh S, Zhang T (2013). Socioeconomic drivers of mercury emissions in China from 1992 to 2007. Environmental Science & Technology, 47(7): 3234–3240

[14]

Lin C J, Pan L, Streets D G, Shetty S K, Jang C, Feng X, Chu H W, Ho T C (2010). Estimating mercury emission outflow from East Asia using CMAQ-Hg. Atmospheric Chemistry and Physics, 10(4): 1853–1864

[15]

Lin C J, Shetty S K, Pan L, Pongprueksa P, Jang C, Chu H W (2012). Source attribution for mercury deposition in the contiguous United States: regional difference and seasonal variation. Journal of the Air & Waste Management Association, 62(1): 52–63

[16]

Lohman K, Seigneur C, Edgerton E, Jansen J (2006). Modeling mercury in power plant plumes. Environmental Science & Technology, 40(12): 3848–3854

[17]

Sakata M, Marumoto K (2005). Wet and dry deposition fluxes of mercury in Japan. Atmospheric Environment, 39(17): 3139–3146

[18]

Selin N E, Jacob D J (2008). Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources. Atmospheric Environment, 42(21): 5193–5204

[19]

Streets D G, Hao J M, Wu Y, Jiang J K, Chan M, Tian H Z, Feng X B (2005). Anthropogenic mercury emissions in China. Atmospheric Environment, 39(40): 7789–7806

[20]

Sutton M A, Burkhardt J K, Guerin D, Nemitz E, Fowler D (1998). Development of resistance models to describe measurements of bi-directional ammonia surface-atmosphere exchange. Atmospheric Environment, 32(3): 473–480

[21]

Tian H Z, Zhu C Y, Gao J J, Cheng K, Hao J M, Wang K, Hua S B, Wang Y, Zhou J R (2015). Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: Historical trend, spatial distribution, uncertainties, and control policies. Atmospheric Chemistry and Physics, 15(17): 10127–10147

[22]

Wang L, Wang S, Zhang L, Wang Y, Zhang Y, Nielsen C, McElroy M B, Hao J (2014). Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. Environmental Pollution, 190: 166–175

[23]

Wang L T, Wei Z, Wei W, Fu J S, Meng C C, Ma S M (2015). Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmospheric Environment, 122: 723–736

[24]

Wang S B, Luo K L (2017). Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China. Atmospheric Environment, 162: 45–54

[25]

Wang S X, Zhang L, Wang L, Wu Q R, Wang F Y, Hao J M (2014). A review of atmospheric mercury emissions, pollution and control in China. Frontiers of Environmental Science & Engineering, 8(5): 631–649

[26]

Wang Y J, Duan Y F, Yang L G, Zhao C S, Xu Y Q (2010). Mercury speciation and emission from the coal-fired power plant filled with flue gas desulfurization equipment. Canadian Journal of Chemical Engineering, 88(5): 867–873

[27]

Wesely M L, Hicks B B (2000). A review of the current status of knowledge on dry deposition. Atmospheric Environment, 34(12–14): 2261–2282

[28]

Wu Q, Wang S, Li G, Liang S, Lin C J, Wang Y, Cai S, Liu K, Hao J (2016). Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978-2014. Environmental Science & Technology, 50(24): 13428–13435

[29]

Wu Y, Wang S, Streets D G, Hao J, Chan M, Jiang J (2006). Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science & Technology, 40(17): 5312–5318

[30]

Zhang L, Wang S, Wang L, Wu Y, Duan L, Wu Q, Wang F, Yang M, Yang H, Hao J, Liu X (2015). Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science & Technology, 49(5): 3185–3194

[31]

Zhang X T, Siddiqi Z, Song X J, Mandiwana K L, Yousaf M, Lu J L (2012). Atmospheric dry and wet deposition of mercury in Toronto. Atmospheric Environment, 50: 60–65

[32]

Zhang Y, Jaegle L, van Donkelaar A, Martin R V, Holmes C D, Amos H M, Wang Q, Talbot R, Artz R, Brooks S, Luke W, Holsen T M, Felton D, Miller E K, Perry K D, Schmeltz D, Steffen A, Tordon R, Weiss-Penzias P, Zsolway R (2012). Nested-grid simulation of mercury over North America. Atmospheric Chemistry and Physics, 12(14): 6095–6111

[33]

Zhao Y, Zhong H, Zhang J, Nielsen C P (2015). Evaluating the effects of China’s pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions. Atmospheric Chemistry and Physics, 15(8): 4317–4337

[34]

Zheng J, Ou J, Mo Z, Yin S (2011). Mercury emission inventory and its spatial characteristics in the Pearl River Delta region, China. Science of the Total Environment, 412-413: 214–222

[35]

Zhu J, Wang T, Bieser J, Matthias V (2015). Source attribution and process analysis for atmospheric mercury in eastern China simulated by CMAQ-Hg. Atmospheric Chemistry and Physics, 15(15): 8767–8779

[36]

Zhu J, Wang T, Talbot R, Mao H, Yang X, Fu C, Sun J, Zhuang B, Li S, Han Y, Xie M (2014). Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China. Atmospheric Chemistry and Physics, 14(5): 2233–2244

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (686KB)

2698

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/