Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type

Weihua Zhao , Meixiang Wang , Jianwei Li , Yu Huang , Baikun Li , Cong Pan , Xiyao Li , Yongzhen Peng

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (5) : 8

PDF (2825KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (5) : 8 DOI: 10.1007/s11783-018-1084-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type

Author information +
History +
PDF (2825KB)

Abstract

A novel two sludge pre-A2NSBR system was developed.

Advanced N and P removal was optimized to treat real domestic wastewater.

Nitrifiers and PAOs were enriched with 19.41% and 26.48%, respectively.

Acetate was demonstrated as the high-quality carbon source type.

Because the efficiency of biological nutrient removal is always limited by the deficient carbon source for the low carbon/nitrogen (C/N) ratio in real domestic sewage, the denitrifying phosphorus removal (DNPR) was developed as a simple and efficient method to remove nitrogen and phosphorous. In addition, this method has the advantage of saving aeration energy while reducing the sludge production. In this context, a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system, which could also reduce high ammonia effluent concentration in the traditional two-sludge DNPR process, is proposed in this work. The pre-A2NSBR process was mainly composed of a DNPR SBR and a nitrifying SBR, operating as alternating anaerobic/anoxic/post-aeration+ nitrification sequence. Herein, the long-term performance of different nitrate recycling ratios (0–300%) and C/N ratios (2.5–8.8), carbon source type, and functional microbial community were studied. The results showed that the removal efficiency of total inorganic nitrogen (TIN, including NH4+-N, NO2 -N, and NO3 -N) gradually increased with the nitrate recycling ratios, and the system reached the highest DNPR efficiency of 94.45% at the nitrate recycling ratio of 300%. The optimum C/N ratio was around 3.9–7.3 with a nitrogen and phosphorus removal efficiency of 80.15% and 93.57%, respectively. The acetate was proved to be a high-quality carbon source for DNPR process. The results of fluorescence in situ hybridization (FISH) analysis indicated that nitrifiers and phosphorus accumulating organisms (PAOs) were accumulated with a proportion of 19.41% and 26.48%, respectively.

Graphical abstract

Keywords

Denitrifying phosphorus removal / C/N ratio / Nitrate recycling / Carbon source type / Biological nutrient removal / Pre-A 2NSBR system

Cite this article

Download citation ▾
Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type. Front. Environ. Sci. Eng., 2018, 12(5): 8 DOI:10.1007/s11783-018-1084-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahn J, Daidou T, Tsuneda S, Hirata A ( 2002 ). Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Research, 36(2): 403–412

[2]

Boiran B, Couton Y, Germon J C (1996). Nitrification and denitrification of liquid lagoon piggery waste in a biofilm infiltration-percolation aerated system (BIPAS) reactor. Bioresource Technology, 55(1): 63–77

[3]

Bortone G, Saltarelli R, Alonso V, Sorm R, Wanner J, Tilche A ( 1996 ). Biological anoxic phosphorus removal—The dephanox process. Water Science and Technology, 34(1–2): 119–128

[4]

Carucci A, Ramadori R, Rossetti S, Tomei M C ( 1996 ). Kinetics of denitrification reactions in single sludge systems. Water Research, 30(1): 51–56

[5]

Chen Y, Peng C, Wang J, Ye L, Zhang L, Peng Y ( 2011 ). Effect of nitrate recycling ratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic (A2/O)-biological aerated filter (BAF) system. Bioresource Technology, 102(10): 5722–5727

[6]

Chen Y, Randall A A, McCue T ( 2004 ). The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Research, 38(1): 27–36

[7]

Chen Y Z, Li B K, Ye L, Peng Y Z ( 2015 ). The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems. Biochemical Engineering Journal, 93(10): 235–242

[8]

Crocetti G R, Hugenholtz P, Bond P L, Schuler A, Keller J, Jenkins D, Blackall L L ( 2000 ). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Applied and Environmental Microbiology, 66(3): 1175–1182

[9]

Du D, Zhang C, Zhao K, Sun G, Zou S, Yuan L, He S ( 2018 ). Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure. Frontiers of Environmental Science & Engineering, 12(2): 4

[10]

Elefsiniotis P, Li D ( 2006 ). The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal, 28(2): 148–155

[11]

Ge S, Zhu Y, Lu C, Wang S, Peng Y ( 2012 ). Full-scale demonstration of step feed concept for improving an anaerobic/anoxic/aerobic nutrient removal process. Bioresource Technology, 120(3): 305–313

[12]

Gong Y K, Peng Y Z, Wang S Y, Wang S ( 2014 ). Production of N2O in two biologic nitrogen removal processes: A comparison between conventional and short-cut nitrogen removal processes. Frontiers of Environmental Science & Engineering, 8(4): 589–597

[13]

Kuba T, VanLoosdrecht M C M, Heijnen J J ( 1996 ). Phosphorus and nitrogen removal with minimal cod requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research, 30(7): 1702–1710

[14]

Lee H S, Park S J, Yoon T I ( 2002 ). Wastewater treatment in a hybrid biological reactor using powdered minerals: Effects of organic loading rates on COD removal and nitrification. Process Biochemistry, 38(1): 81–88

[15]

Lee N M, Welander T ( 1996 ). The effect of different carbon sources on respiratory denitrification in biological wastewater treatment. Journal of Fermentation and Bioengineering, 82(3): 277–285

[16]

Liu X, Wang H, Yang Q, Li J, Zhang Y, Peng Y ( 2017 ). Online control of biofilm and reducing carbon dosage in denitrifying biofilter: Pilot and full-scale application. Frontiers of Environmental Science & Engineering, 11(1): 4

[17]

Ma B, Wang S Y, Zhu G B, Ge S J, Wang J M, Ren N Q, Peng Y Z ( 2013 ). Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies. Frontiers of Environmental Science & Engineering, 7(2): 267–272

[18]

Ma Y, Peng Y Z, Wang X L ( 2009 ). Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal. Desalination, 246(1–3): 534–544

[19]

Paungfoo C, Prasertsan P, Burrell P C, Intrasungkha N, Blackall L L ( 2007 ). Nitrifying bacterial communities in an aquaculture wastewater treatment system using fluorescence in situ hybridization (FISH), 16S rRNA gene cloning, and phylogenetic analysis. Biotechnology and Bioengineering, 97(4): 985–990

[20]

Pijuan M, Casas C, Baeza J A ( 2009 ). Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Process Biochemistry, 44(1): 97–105

[21]

Sun S P, Nàcher C P i, Merkey B, Zhou Q, Xia S Q, Yang D H, Sun J H, Smets B F (2010). Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: A review. Environmental Engineering Science, 27(2): 111–126

[22]

Thomas M, Wright P, Blackall L, Urbain V, Keller J ( 2003 ). Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Water Science and Technology, 47(12): 141–148

[23]

van Loosdrecht M C M, Brandse F A, de Vries A C ( 1998 ). Upgrading of waste water treatment processes for integrated nutrient removal- The BCFS (R) process. Water Science and Technology, 37(9): 209–217

[24]

Walters E, Hille A, He M, Ochmann C, Horn H ( 2009 ). Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material. Water Research, 43(18): 4461–4468

[25]

Wang X, Wang S, Xue T, Li B, Dai X, Peng Y ( 2015 ). Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage. Water Research, 77: 191–200

[26]

Wang Y, Geng J, Ren Z, Guo G, Wang C, Wang H ( 2013 ). Effect of COD/N and COD/P ratios on the PHA transformation and dynamics of microbial community structure in a denitrifying phosphorus removal process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 88(7): 1228–1236

[27]

Wanner J, Cech J S, Kos M ( 1992 ). New process design for biological nutrient removal. Water Science and Technology, 25(4–5): 445–448

[28]

Yagci N, Cokgor E U, Artan N, Randall C, Orhon D ( 2007 ). The effect of substrate on the composition of polyhydroxyalkanoates in enhanced biological phosphorus removal. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 82(3): 295–303

[29]

Yang Y, Zhang L, Shao H, Zhang S, Gu P, Peng Y ( 2017 ). Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by partial nitritation/anammox. Frontiers of Environmental Science & Engineering, 11(2): 8

[30]

Yu J, Si Y ( 2004 ). Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids. Biotechnology Progress, 20(4): 1015–1024

[31]

Zeng R J, Lemaire R, Yuan Z, Keller J ( 2003 ). Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering, 84(2): 170–178

[32]

Zeng W, Li B, Yang Y, Wang X, Li L, Peng Y ( 2014 ). Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges. Bioprocess and Biosystems Engineering, 37(2): 277–287

[33]

Zeng W, Peng Y Z, Wang S Y (2004). A two-stage SBR process for removal of organic substrate and nitrogen via nitrite-type nitrification-denitrification. Journal of Environmental Science and Health Part A—Toxic/Hazardous Substances & Environmental Engineering, 39(8): 2229–2239

[34]

Zhang M, Peng Y, Wang C, Wang C, Zhao W, Zeng W ( 2016a ). Optimization denitrifying phosphorus removal at different hydraulic retention times in a novel anaerobic anoxic oxic-biological contact oxidation process. Biochemical Engineering Journal, 106: 26–36

[35]

Zhang M, Wang C, Peng Y, Wang S, Jia F, Zeng W ( 2016b ). Organic substrate transformation and sludge characteristics in the integrated anaerobic anoxic oxic–biological contact oxidation (A2/O–BCO) system treating wastewater with low carbon/nitrogen ratio. Chemical Engineering Journal, 283: 47–57

[36]

Zhang M, Yang Q, Zhang J, Wang C, Wang S, Peng Y ( 2016c ). Enhancement of denitrifying phosphorus removal and microbial community of long-term operation in an anaerobic anoxic oxic-biological contact oxidation system. Journal of Bioscience and Bioengineering, 122(4): 456–466

[37]

Zhang W, Hou F, Peng Y Z, Liu Q S, Wang S Y ( 2014 ). Optimizing aeration rate in an external nitrification-denitrifying phosphorus removal (ENDPR) system for domestic wastewater treatment. Chemical Engineering Journal, 245: 342–347

[38]

Zhang W, Peng Y, Ren N, Liu Q, Chen Y ( 2013 ). Improvement of nutrient removal by optimizing the volume ratio of anoxic to aerobic zone in AAO-BAF system. Chemosphere, 93(11): 2859–2863

[39]

Zhao W, Huang Y, Wang M, Pan C, Li X, Peng Y, Li B ( 2018 ). Post-endogenous denitrification and phosphorus removal in an alternating anaerobic/oxic/anoxic (AOA) system treating low carbon/nitrogen (C/N) domestic wastewater. Chemical Engineering Journal, 339: 450–458

[40]

Zhao W, Zhang Y, Lv D, Wang M, Peng Y, Li B ( 2016 ). Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A2NSBR) treating low carbon/nitrogen (C/N) wastewater. Chemical Engineering Journal, 302: 296–304

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2825KB)

3320

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/