PDF
(811KB)
Abstract
The mixed samples of contaminated soil, sludge and coke wastewater showed great phenanthrene methanogenic degradation potential.
Comamonadaceae, Nocardiaceae and Methanobacterium were dominant members.
Hexane, hexadecane and benzene could enhance phenanthrene degradation.
![]()
Polycyclic aromatic hydrocarbons (PAHs) often occur in oil-contaminated soil, coke wastewater and domestic sludge; however, associated PAH degraders in these environments are not clear. Here we evaluated phenanthrene degradation potential in the mixed samples of above environments, and obtained a methanogenic community with different microbial profile compared to those from sediments. Phenanthrene was efficiently degraded (1.26 mg/L/d) and nonstoichiometric amount of methane was produced simultaneously. 16S rRNA gene sequencing demonstrated that bacterial populations were mainly associated with Comamonadaceae Nocardiaceae and Thermodesulfobiaceae, and that methanogenic archaea groups were dominated by Methanobacterium and Methanothermobacter. Substances such as hexane, hexadecane, benzene and glucose showed the most positive effects on phenanthrene degradation. Substrate utilization tests indicated that this culture could not utilize other PAHs. These analyses could offer us some suggestions on the putative phenanthrene-degrading microbes in such environments, and might help us develop strategies for the removal of PAHs from contaminated soil and sludge.
Graphical abstract
Keywords
Phenanthrene degradation potential
/
Methanogenic
/
Bacterial population
/
Archaeal group
Cite this article
Download citation ▾
Quanhui Ye, Chengyue Liang, Chongyang Wang, Yun Wang, Hui Wang.
Characterization of a phenanthrene-degrading methanogenic community.
Front. Environ. Sci. Eng., 2018, 12(5): 4 DOI:10.1007/s11783-018-1083-2
| [1] |
Aislabie J, McLeod M, Fraser R (1998). Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Applied Microbiology and Biotechnology, 49(2): 210–214
|
| [2] |
Bengtsson G, Zerhouni P (2003). Effects of carbon substrate enrichment and DOC concentration on biodegradation of PAHs in soil. Journal of Applied Microbiology, 94(4): 608–617
|
| [3] |
Berdugo-Clavijo C, Dong X, Soh J, Sensen C W, Gieg L M (2012). Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology, 81(1): 124–133
|
| [4] |
Canul-Chan M, Sánchez-González M, González-Burgos A, Zepeda A, Rojas-Herrera R (2017). Population structures shift during the biodegradation of crude and fuel oil by an indigenous consortium. International Journal of Environmental Science and Technology, 15(1): 1–16
|
| [5] |
Chang B V, Chang I T, Yuan S Y (2008a). Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bulletin of Environmental Contamination and Toxicology, 80(2): 145–149
|
| [6] |
Chang B V, Chang S W, Yuan S Y. Anaerobic degradation of polycyclic aromatic hydrocarbons in sludge. Adv Environ Res, 2003, 7(3): 623–628
|
| [7] |
Chang B V, Shiung L C, Yuan S Y. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, 2002, 48: 717–724
|
| [8] |
Chang M W, Holoman T P, Yi H (2008b). Molecular characterization of surfactant-driven microbial community changes in anaerobic phenanthrene-degrading cultures under methanogenic conditions. Biotechnology Letters, 30(9): 1595–1601
|
| [9] |
Chang W, Um Y, Hoffman B, Pulliam Holoman T R (2005). Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities. Biotechnology Progress, 21(3): 682–688
|
| [10] |
Chang W, Um Y, Holoman T R (2006). Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis. Biotechnology Letters, 28(6): 425–430
|
| [11] |
Chen S, Aitken M D (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environmental Science & Technology, 33(3): 435–439
|
| [12] |
Davidova I A, Gieg L M, Duncan K E, Suflita J M (2007). Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. ISME Journal, 1(5): 436–442
|
| [13] |
Fang T, Pan R, Jiang J, He F, Wang H (2016). Effect of salinity on community structure and naphthalene dioxygenase gene diversity of a halophilic bacterial consortium. Frontiers of Environmental Science & Engineering, 10(6): 16
|
| [14] |
Fuchedzhieva N, Karakashev D, Angelidaki I (2008). Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds. Journal of Hazardous Materials, 153(1-2): 123–127
|
| [15] |
Galushko A, Minz D, Schink B, Widdel F (1999). Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environmental Microbiology, 1(5): 415–420
|
| [16] |
Gómez R S G, Pandiyan T, Iris V E A, Luna-Pabello V, de Bazúa C D (2004). Spectroscopic determination of poly-aromatic compounds in petroleum contaminated soils. Water, Air, and Soil Pollution, 158(1): 137–151
|
| [17] |
Goyal A K, Zylstra G J (1996). Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Applied and Environmental Microbiology, 62(1): 230–236
|
| [18] |
Gray N D, Sherry A, Larter S R, Erdmann M, Leyris J, Liengen T, Beeder J, Head I M (2009). Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles, 13(3): 511–519
|
| [19] |
Haritash A K, Kaushik C P (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169(1-3): 1–15
|
| [20] |
Huang Y, Zhang J, Zhu L (2013). Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm community. Bioresource Technology, 134: 17–23
|
| [21] |
Jiménez N, Viñas M, Bayona J M, Albaiges J, Solanas A M (2007). The Prestige oil spill: bacterial community dynamics during a field biostimulation assay. Applied Microbiology and Biotechnology, 77(4): 935–945
|
| [22] |
Keith L H, Telliard W A (1979). Priority pollutants I—A perspective view. Environmental Science & Technology, 13(4): 416–423
|
| [23] |
Kong X, Yu S, Xu S, Fang W, Liu J, Li H (2018). Effect of Fe0 addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates. Waste Management (New York, N.Y.), 71: 719–727
|
| [24] |
Kryachko Y, Dong X, Sensen C W, Voordouw G (2012). Compositions of microbial communities associated with oil and water in a mesothermic oil field. Antonie van Leeuwenhoek, 101(3): 493–506
|
| [25] |
Kümmel S, Herbst F A, Bahr A, Duarte M, Pieper D H, Jehmlich N, Seifert J, von Bergen M, Bombach P, Richnow H H, Vogt C (2015). Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiology Ecology, 91(3): 1–13
|
| [26] |
Li H, Chang J, Liu P, Fu L, Ding D, Lu Y (2015). Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environmental Microbiology, 17(5): 1533–1547
|
| [27] |
Liang B, Wang L Y, Mbadinga S M, Liu J F, Yang S Z, Gu J D, Mu B Z (2015). Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express, 5(1): 117
|
| [28] |
Lladó S, Jiménez N, Viñas M, Solanas A M (2009). Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil. Biodegradation, 20(5): 593–601
|
| [29] |
Luo J, Zhang J, Tan X, McDougald D, Zhuang G, Fane A G, Kjelleberg S, Cohen Y, Rice S A (2015). Characterization of the archaeal community fouling a membrane bioreactor. Journal of Environmental Sciences (China), 29: 115–123
|
| [30] |
Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009). Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environmental Microbiology, 11(1): 209–219
|
| [31] |
Pérez S, Guillamón M, Barceló D (2001). Quantitative analysis of polycyclic aromatic hydrocarbons in sewage sludge from wastewater treatment plants. Journal of Chromatography. A, 938(1-2): 57–65
|
| [32] |
Pinyakong O, Tiangda K, Iwata K, Omori T (2012). Isolation of novel phenanthrene-degrading bacteria from seawater and the influence of its physical factors on the degradation of phenanthrene. Science Asia, 38(1): 36–43
|
| [33] |
Safinowski M, Meckenstock R U (2006). Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environmental Microbiology, 8(2): 347–352
|
| [34] |
Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K (1998). Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology-Uk, 144(Pt 9): 2655–2665
|
| [35] |
Sullivan E R, Zhang X, Phelps C, Young L Y (2001). Anaerobic mineralization of stable-isotope-labeled 2-methylnaphthalene. Applied and Environmental Microbiology, 67(9): 4353–4357
|
| [36] |
Tøndervik A, Bruheim P, Berg L, Ellingsen T E, Kotlar H K, Valla S, Throne-Holst M (2012). Ralstonia sp. U2 naphthalene dioxygenase and Comamonas sp. JS765 nitrobenzene dioxygenase show differences in activity towards methylated naphthalenes. Journal of Bioscience and Bioengineering, 113(2): 173–178
|
| [37] |
Wan R, Zhang S, Xie S (2012). Microbial community changes in aquifer sediment microcosm for anaerobic anthracene biodegradation under methanogenic condition. Journal of Environmental Sciences (China), 24(8): 1498–1503
|
| [38] |
Yarza P, Yilmaz P, Pruesse E, Glöckner F O, Ludwig W, Schleifer K H, Whitman W B, Euzéby J, Amann R, Rosselló-Móra R (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews. Microbiology, 12(9): 635–645
|
| [39] |
Ye Q, Zhang Z, Huang Y, Fang T, Cui Q, He C, Wang H (2018). Enhancing electron transfer by magnetite during phenanthrene anaerobic methanogenic degradation. International Biodeterioration & Biodegradation, 129: 109–116
|
| [40] |
Yin Q, Miao J, Li B, Wu G (2017). Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon. International Biodeterioration & Biodegradation, 119: 104–110
|
| [41] |
Yuan S Y, Chang B V (2007). Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 42(1): 63–69
|
| [42] |
Zhang S, Wang Q, Xie S (2012a). Stable isotope probing identifies anthracene degraders under methanogenic conditions. Biodegradation, 23(2): 221–230
|
| [43] |
Zhang S Y, Wang Q F, Xie S G (2012b). Molecular characterization of phenanthrene-degrading methanogenic communities in leachate-contaminated aquifer sediment. International Journal of Environmental Science and Technology, 9(4): 705–712
|
| [44] |
Zhang X, Young L Y (1997). Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Applied and Environmental Microbiology, 63(12): 4759–4764
|
| [45] |
Zhou S, Xu J, Yang G, Zhuang L (2014). Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances. FEMS Microbiology Ecology, 88(1): 107–120
|
| [46] |
Zhuang L, Tang J, Wang Y, Hu M, Zhou S (2015). Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. Journal of Hazardous Materials, 293: 37–45
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature