Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism

Qinqin Liu , Miao Li , Xiang Liu , Quan Zhang , Rui Liu , Zhenglu Wang , Xueting Shi , Jin Quan , Xuhui Shen , Fawang Zhang

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (6) : 6

PDF (330KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (6) : 6 DOI: 10.1007/s11783-018-1048-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism

Author information +
History +
PDF (330KB)

Abstract

The artificial composite soil treatment system could efficiently remove SMX and TMP by biodegradation mechanism.

Bacillus subtilis from column reactors degraded SMX and TMP efficiently.

Bacillus subtilis biodegrades TMP to NH4+, and then converts NH4+ to NO3.

Sulfamethoxazole (SMX) and trimethoprim (TMP) are two critical sulfonamide antibiotics with enhanced persistency that are commonly found in wastewater treatment plants. Recently, more scholars have showed interests in how SMX and TMP antibiotics are biodegraded, which is seldom reported previously. Novel artificial composite soil treatment systems were designed to allow biodegradation to effectively remove adsorbed SMX and TMP from the surface of clay ceramsites. A synergy between sorption and biodegradation improves the removal of SMX and TMP. One highly efficient SMX and TMP degrading bacteria strain, Bacillus subtilis, was isolated from column reactors. In the removal process, this bacteria degrade SMX and TMP to NH4+, and then further convert NH4+ to NO3 in a continuous process. Microbial adaptation time was longer for SMX degradation than for TMP, and SMX was also able to be degraded in aerobic conditions. Importantly, the artificial composite soil treatment system is suitable for application in practical engineering.

Graphical abstract

Keywords

Trimethoprim / Sulfamethoxazole / Biodegradation / Aerobic nitrification

Cite this article

Download citation ▾
Qinqin Liu, Miao Li, Xiang Liu, Quan Zhang, Rui Liu, Zhenglu Wang, Xueting Shi, Jin Quan, Xuhui Shen, Fawang Zhang. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism. Front. Environ. Sci. Eng., 2018, 12(6): 6 DOI:10.1007/s11783-018-1048-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexy R, Kümpel T, Kümmerer K (2004). Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere, 57(6): 505–512

[2]

Association APH (1960). Standard Methods for the Examination of Water and Waste-Water including Bottom Sediments and Sludges 11th Ed. Maryland: United Book Press

[3]

Ávila C, García J (2015). Pharmaceuticals and Personal Care Products (PPCPs) in the Environment and Their Removal from Wastewater through Constructed Wetlands, Elsevier Science & Technology, 195–244

[4]

Batt A L, Kim S, Aga D S (2006). Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environmental Science Technology, 40(23): 7367–7373

[5]

Baumgarten B, Jährig J, Reemtsma T, Jekel M (2011). Long term laboratory column experiments to simulate bank filtration: Factors controlling removal of sulfamethoxazole. Water Research, 45(1): 211–220

[6]

Benotti M J, Brownawell B J (2009). Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environmental Pollution, 157(3): 994–1002

[7]

Buser H R, Thomas Poiger A, Müller M D (1998). Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake. Environmental Science Technology, 32(22): 3449–3456

[8]

Chen G, Li M, Liu X (2015). Fluoroquinolone antibacterial agent contaminants in soil/groundwater: A literature review of sources, fate, and occurrence. Water Air Soil Pollution, 226(12): 418

[9]

Choi Y S, Hong S W, Kim S J, Chung I H (2002). Development of a biological process for livestock wastewater treatment using a technique for predominant outgrowth of Bacillus species. Water Science Technology, 45(12): 71–78

[10]

Eichhorn P, Ferguson P L, Pérez S, Aga D S (2005). Application of ion trap-MS with H/D exchange and QqTOF-MS in the identification of microbial degradates of trimethoprim in nitrifying activated sludge. Analytical Chemistry, 77(13): 4176–4184

[11]

Göbel A, Thomsen A, McArdell C S, Joss A, Giger W (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science Technology, 39(11): 3981–3989

[12]

Grünheid S, Amy G, Jekel M (2005). Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Research, 39(14): 3219–3228

[13]

Gulkowska A, Leung H W, So M K, Taniyasu S, Yamashita N, Yeung L W Y, Richardson B J, Lei A P, Giesy J P, Lam P K S (2008). Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Research, 42(1-2): 395–403

[14]

Heberer T, Massmann G, Fanck B, Taute T, Dünnbier U (2008). Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere, 73(4): 451–460

[15]

Hernández F, Sancho J V, Ibáñez M, Guerrero C (2007). Antibiotic residue determination in environmental waters by LC-MS. TrAC Trends in Analytical Chemistry, 26(6): 466–485

[16]

Hijosa-Valsero M, Fink G, Schlüsener M P, Sidrach-Cardona R, Martín-Villacorta J, Ternes T, Bécares E (2011). Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere, 83(5): 713–719

[17]

Jiang X, Ma M, Li J, Lu A, Zhong Z (2011). Analysis of microbial molecular ecology techniques in constructed Rapid Infiltration system. Journal of Earth Sciences, 22(5): 669–676

[18]

Kim J K, Park K J, Cho K S, Nam S W, Park T J, Bajpai R (2005). Aerobic nitrification-denitrification by heterotrophic Bacillus strains. Bioresource Technology, 96(17): 1897–1906

[19]

Kleywegt S, Pileggi V, Yang P, Hao C, Zhao X, Rocks C, Thach S, Cheung P, Whitehead B (2011). Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada—Occurrence and treatment efficiency. Science of the Total Environment, 409(8): 1481–1488

[20]

Li B, Zhang T (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science Technology, 44(9): 3468–3473

[21]

Liu Q, Li M, Zhang F, Yu H, Zhang Q, Liu X (2017a). The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil treatment system. Frontiers of Environmental Science & Engineering, 11(2): 12

[22]

Liu Q, Li M, Zhang F, Yu H, Zhang Q, Liu X (2017b). Study of the hydrogeochemical processes during enhanced trimethoprim and sulfamethoxazole removal in artificial composite soil treatment system. Desalination Water Treatment, 85: 120–131

[23]

Loos R, Carvalho R, António D C, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg R H, Schwesig D, Gawlik B M (2013). EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 47(17): 6475–6487

[24]

Mojica E R E, Aga D S (2011). Antibiotics Pollution in Soil and Water: Potential Ecological and Human Health Issues. In Encyclopedia of Environmental Health. Nriagu J O ed.. Burlington: Elsevier, 97–110

[25]

Pal A, Gin K Y, Lin A Y, Reinhard M (2010). Impacts of emerging organic contaminants on fresh water resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24): 6062–6069

[26]

Pan M, Chu L M (2016). Adsorption and degradation of five selected antibiotics in agricultural soil. Science of the Total Environment, 545-546: 48–56

[27]

Pérez S, Eichhorn P, Aga D S (2005). Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem, 24(6): 1361–1367

[28]

Stackelberg P E, Furlong E T, Meyer M T, Zaugg S D, Henderson A K, Reissman D B (2004). Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Science of the Total Environment, 329(1-3): 99–113

[29]

Sui Q, Cao X, Lu S, Zhao W, Qiu Z, Yu G (2015). Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerging Contaminants, 1(1): 14–24

[30]

Taylor R H, Geldreich E E (1983). Standard plate count: A comparison of pour plate and spread plate methods. Journal- American Water Works Association, 75(1): 35–37

[31]

Verlicchi P, Al Aukidy M, Zambello E (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review. Science of the Total Environment, 429: 123–155

[32]

Vulliet E, Cren-Olivé C (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution, 159(10): 2929–2934

[33]

Vymazal J, Březinová T, Koželuh M (2015). Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic. Science of the Total Environment, 536: 625–631

[34]

Weiss W J, Speth T F (2003). riverbank filtration- fate of DBP precursors and selected microorganisms. Journal- American Water Works Association, 95(10): 68–81

[35]

Westerhoff P, Yoon Y, Snyder S, Wert E (2005). Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science Technology, 39(17): 6649–6663

[36]

Xu B, Mao D, Luo Y, Xu L (2011). Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river. Bioresource Technology, 102(14): 7069–7076

[37]

Xu W, Zhang G, Li X, Zou S, Li P, Hu Z, Li J (2007). Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research, 41(19): 4526–4534

[38]

Ziylan A, Ince N H (2011). The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. Journal of Hazardous Materials, 187(1-3): 24–36

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (330KB)

Supplementary files

FSE-18017-OF-LQQ_suppl_1

2538

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/