Broadening of appropriate demulsifier dosage range for latex-containing wastewater by sulfate addition

Shengzhi Zheng, Yudong Song, Yiming Li, Lidong Sun, Bin Hu, Mingdong An, Yuexi Zhou

PDF(1899 KB)
PDF(1899 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (6) : 4. DOI: 10.1007/s11783-018-1041-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Broadening of appropriate demulsifier dosage range for latex-containing wastewater by sulfate addition

Author information +
History +

Highlights

The effect of latex concentration on appropriate demulsifier dosage was investigated.

The appropriate demulsifier dosage range was controlled by zeta potential.

Sulfate could broaden appropriate demulsifier dosage range and improve latex removal.

Abstract

Investigation of demulsification of polybutadiene latex (PBL) wastewater by polyaluminum chloride (PAC) indicated that there was an appropriate dosage range for latex removal. The demulsification mechanism of PAC was adsorption-charge neutralization and its appropriate dosage range was controlled by zeta potential. When the zeta potential of the mixture was between -15 and 15 mV after adding PAC, the demulsification effect was good. Decreasing the latex concentration in chemical oxygen demand (COD) from 8.0 g/L to 0.2 g/L made the appropriate PAC dosage range narrower and caused the maximum latex removal efficiency to decrease from 95% to 37%. Therefore, more accurate PAC dosage control is required. Moreover, adding 50 mg/L sulfate broadened the appropriate PAC dosage range, resulting in an increase in maximum latex removal efficiency from 37% to 91% for wastewater of 0.2 g COD/L. The addition of sulfate will favor more flexible PAC dosage control in demulsification of PBL wastewater.

Graphical abstract

Keywords

Demulsification / Polybutadiene latex wastewater / Polyaluminum chloride / Zeta potential / Sulfate addition

Cite this article

Download citation ▾
Shengzhi Zheng, Yudong Song, Yiming Li, Lidong Sun, Bin Hu, Mingdong An, Yuexi Zhou. Broadening of appropriate demulsifier dosage range for latex-containing wastewater by sulfate addition. Front. Environ. Sci. Eng., 2018, 12(6): 4 https://doi.org/10.1007/s11783-018-1041-z

References

[1]
AlMubaddal F, AlRumaihi K, Ajbar A(2009). Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant. Journal of Hazardous Materials, 161(1): 431–438
CrossRef Pubmed Google scholar
[2]
Chern C S (2006). Emulsion polymerization mechanisms and kinetics. Progress in Polymer Science, 31(5): 443–486
CrossRef Google scholar
[3]
European Commission (2007). Reference Document on Best Available Techniques in the Production of Polymers. 2007, Chapter 1: 7. Available online athttp://eippcb.jrc.ec.europa.eu/reference/pol.html (accessed January 8, 2018)
[4]
Gregory J, Barany S (2011). Adsorption and flocculation by polymers and polymer mixtures. Advances in Colloid and Interface Science, 169(1): 1–12
CrossRef Pubmed Google scholar
[5]
Gunes D Z, Munch J P, Dorget M, Knaebel A, Lequeux F (2005). Flocculation, deflocculation, and ions migration in latex suspensions. Journal of Colloid and Interface Science, 286(2): 564–572
CrossRef Pubmed Google scholar
[6]
Huang J X, Zhang X S, Gao H X, Lu S L (2017). ABS resin production and market for 2016. Chemistry Industry, 35(4): 45–50 (in Chinese)
[7]
Hungenberg K D, Jahns E (2017). Trends in Emulsion Polymerization Processes from an Industrial Perspective. Advances in Polymer Science, Berlin, Heidelberg: Springer, https://doi.org/10.1007/12_2017_14
[8]
Kobayashi M, Nitanai M, Satta N, Adachi Y (2013). Coagulation and charging of latex particles in the presence of imogolite. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 435(IAP 2012): 139–146
CrossRef Google scholar
[9]
Lai B, Zhou Y, Yang P, Wang K (2012). Comprehensive analysis of the toxic and refractory pollutants in acrylonitrile-butadiene-styrene resin manufacturing wastewater by gas chromatography spectrometry with a mass or flame ionization detector. Journal of Chromatography. A, 1244(12): 161–167
CrossRef Pubmed Google scholar
[10]
Larue O, Vorobiev E (2003). Floc size estimation in iron induced electrocoagulation and coagulation using sedimentation data. International Journal of Mineral Processing, 71(1–4): 1–15
CrossRef Google scholar
[11]
Larue O, Vorobiev E, Vu C, Durand B (2003). Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions. Separation and Purification Technology, 31(2): 177–192
CrossRef Google scholar
[12]
Lee C S, Robinson J, Chong M F (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92(6): 489–508
CrossRef Google scholar
[13]
Letterman R D, Vanderbrook S G (1983). Effect of solution chemistry on coagulation with hydrolyzed Al(III): Significance of sulfate ion and pH. Water Research, 17(2): 195–204
CrossRef Google scholar
[14]
Liu B J, Meng W T, Wang P, Zhang M Y, Zhang H X (2016). In situ charge neutralization-controlled particle coagulation and its effects on the particle size distribution in the one-step emulsion polymerization. European Polymer Journal, 83: 278–287
CrossRef Google scholar
[15]
Luo M, Song Y D, Zheng S Z, Zhou Y X, He X W(2016). Effect of latex concentration in ABS resin wastewater on demulsification. Journal of Chemical Industry and Engineering (China), 67(11): 4837–4842 (in Chinese)
[16]
MEPPRC (Ministry Environmental Protection of People’s Republic of China) (2002). Standard Methods for Water and Wastewater Monitoring and Analysis. 4th ed. Beijing: China Environmental Science Press, 210–213 (in Chinese)
[17]
Mikola M, Tanskanen J (2017). Performance of aluminium formate in removal of colloidal latex particles from industrial wastewater. Journal of Water Process Engineering, 16: 290–295
CrossRef Google scholar
[18]
Parthasarathy N, Buffle J (1985). Study of polymeric aluminium(III) hydroxide solutions for application in waste water treatment: Properties of the polymer and optimal conditions of preparation. Water Research, 19(1): 25–36
CrossRef Google scholar
[19]
Rao J P, Geckeler K E (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36(7): 887–913
CrossRef Google scholar
[20]
Shakerkhatibi M, Mosaferi M, Benis K Z, Akbari Z ( 2016 ). Performance evaluation of a full-scale ABS resin manufacturing wastewater treatment plant: A case study in Tabriz Petrochemical Complex. Environmental Health Engineering and Management Journal, 3(3): 151–158
CrossRef Google scholar
[21]
Sher F, Malik A, Liu H (2013). Industrial polymer effluent treatment by chemical coagulation and flocculation. Journal of Environmental Chemical Engineering, 1(4): 684–689
CrossRef Google scholar
[22]
Wang D, Tang H, Gregory J(2002). Relative importance of charge neutralization and precipitation on coagulation of Kaolin with PACI: Effect of sulfate ion. Environmental Science & Technology, 36(8): 1815–1820
CrossRef Pubmed Google scholar
[23]
Wu Z, Zhang P Y, Zeng G M, Zhang M, Jiang J H (2012). Humic acid removal from water with polyaluminum coagulants: Effect of sulfate on aluminum polymerization. Journal of Environmental Engineering, 138(3): 293–298
CrossRef Google scholar

Acknowledgements

The work is supported by the China Special S&T Project on Treatment And Control of Water Pollution (No. 2012ZX07201-005) and the National Natural Science Foundation of China (Grant No. 51308521).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer–Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1899 KB)

Accesses

Citations

Detail

Sections
Recommended

/