Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions
Dawen Gao, Xiaolong Wang, Hong Liang, Qihang Wei, Yuan Dou, Longwei Li
Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions
The unique characteristics of anammox bacteria were reviewed.
Ecological distribution and nitrogen loss contributions were well documented.
Ecological interactions between anammox bacteria and other organisms were discussed.
Anammox (ANaerobic AMMonia OXidation) is a newly discovered pathway in the nitrogen cycle. This discovery has increased our knowledge of the global nitrogen cycle and triggered intense interest for anammox-based applications. Anammox bacteria are almost ubiquitous in the suboxic zones of almost all types of natural ecosystems and contribute significant to the global total nitrogen loss. In this paper, their ecological distributions and contributions to the nitrogen loss in marine, wetland, terrestrial ecosystems, and even extreme environments were reviewed. The unique metabolic mechanism of anammox bacteria was well described, including the particular cellular structures and genome compositions, which indicate the special evolutionary status of anammox bacteria. Finally, the ecological interactions among anammox bacteria and other organisms were discussed based on substrate availability and spatial organizations. This review attempts to summarize the fundamental understanding of anammox, provide an up-to-date summary of the knowledge of the overall anammox status, and propose future prospects for anammox. Based on novel findings, the metagenome has become a powerful tool for the genomic analysis of communities containing anammox bacteria; the metabolic diversity and biogeochemistry in the global nitrogen budget require more comprehensive studies.
Anammox / Metabolism / Metagenome / Ecological distribution / Microbial interactions
[1] |
Dalsgaard T, Thamdrup B, Canfield D E. Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology, 2005, 156(4): 457–464
CrossRef
Pubmed
Google scholar
|
[2] |
Broda E. Two kinds of lithotrophs missing in nature. Zeitschrift fur allgemeine Mikrobiologie, 1977, 17(6): 491–493
CrossRef
Pubmed
Google scholar
|
[3] |
Mulder A, Graaf A, Robertson L, Kuenen J. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995, 16(3): 177–184
CrossRef
Google scholar
|
[4] |
van de Graaf A A, Mulder A, de Bruijn P, Jetten M S, Robertson L A, Kuenen J G. Anaerobic oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology, 1995, 61(4): 1246–1251
Pubmed
|
[5] |
Liu S, Yang F, Gong Z, Meng F, Chen H, Xue Y, Furukawa K. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresource Technology, 2008, 99(15): 6817–6825
CrossRef
Pubmed
Google scholar
|
[6] |
Kuypers M M, Sliekers A O, Lavik G, Schmid M, Jørgensen B B, Kuenen J G, Sinninghe Damsté J S, Strous M, Jetten M S. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422(6932): 608–611
CrossRef
Pubmed
Google scholar
|
[7] |
Woebken D, Lam P, Kuypers M M, Naqvi S W, Kartal B, Strous M, Jetten M S, Fuchs B M, Amann R. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology, 2008, 10(11): 3106–3119
CrossRef
Pubmed
Google scholar
|
[8] |
Li H, Chen S, Mu B Z, Gu J D. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs. Microbial Ecology, 2010, 60(4): 771–783
CrossRef
Pubmed
Google scholar
|
[9] |
Hong Y G, Li M, Cao H, Gu J D. Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: Analyses of marker gene abundance with physical chemical parameters. Microbial Ecology, 2011, 62(1): 36–47
CrossRef
Pubmed
Google scholar
|
[10] |
van de Vossenberg J, Woebken D, Maalcke W J, Wessels H J, Dutilh B E, Kartal B, Janssen-Megens E M, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs K J, Russ L, Lam P, Malfatti S A, Tringe S G, Haaijer S C, Op den Camp H J, Stunnenberg H G, Amann R, Kuypers M M, Jetten M S. The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology, 2013, 15(5): 1275–1289
CrossRef
Pubmed
Google scholar
|
[11] |
Fuchsman C A, Staley J T, Oakley B B, Kirkpatrick J B, Murray J W. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiology Ecology, 2012, 80(2): 402–416
CrossRef
Pubmed
Google scholar
|
[12] |
Dalsgaard T, Canfield D E, Petersen J, Thamdrup B, Acuña-González J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature, 2003, 422(6932): 606–608
CrossRef
Pubmed
Google scholar
|
[13] |
Lam P, Lavik G, Jensen M M, van de Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten M S M, Kuypers M M M. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4752–4757
CrossRef
Pubmed
Google scholar
|
[14] |
Rush D, Wakeham S G, Hopmans E C, Schouten S, Sinninghe Damsté J S. Biomarker evidence for anammox in the oxygen minimum zone of the Eastern Tropical North Pacific. Organic Geochemistry, 2012, 53: 80–87
CrossRef
Google scholar
|
[15] |
Nicholls J C, Davies C A, Trimmer M. High-resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central Arabian Sea. Limnology and Oceanography, 2007, 52(1): 156–168
CrossRef
Google scholar
|
[16] |
Jensen M M, Lam P, Revsbech N P, Nagel B, Gaye B, Jetten M S, Kuypers M M. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. The ISME Journal, 2011, 5(10): 1660–1670
CrossRef
Pubmed
Google scholar
|
[17] |
Kuypers M M, Lavik G, Woebken D, Schmid M, Fuchs B M, Amann R, Jørgensen B B, Jetten M S. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(18): 6478–6483
CrossRef
Pubmed
Google scholar
|
[18] |
Schneider B, Nausch G, Pohl C. Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water. Marine Chemistry, 2010, 119(1–4): 153–161
CrossRef
Google scholar
|
[19] |
Schmid M C, Risgaard-Petersen N, van de Vossenberg J, Kuypers M M, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr M K, Strous M, den Camp H J, Jetten M S. Anaerobic ammonium-oxidizing bacteria in marine environments: Widespread occurrence but low diversity. Environmental Microbiology, 2007, 9(6): 1476–1484
CrossRef
Pubmed
Google scholar
|
[20] |
Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology, 2002, 68(3): 1312–1318
CrossRef
Pubmed
Google scholar
|
[21] |
Shu Q, Jiao N. Profiling Planctomycetales diversity with reference to anammox-related bacteria in a South China Sea, deep-sea sediment. Marine Ecology (Berlin), 2008, 29(4): 413–420
CrossRef
Google scholar
|
[22] |
Trimmer M, Nicholls J C. Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic. Limnology and Oceanography, 2009, 54(2): 577–589
CrossRef
Google scholar
|
[23] |
Shehzad A, Liu J, Yu M, Qismat S, Liu J, Zhang X H. Diversity, community composition and abundance of anammox bacteria in sediments of the North Marginal Seas of China. Microbes and Environments, 2016, 31(2): 111–120
CrossRef
Pubmed
Google scholar
|
[24] |
Kartal B, Kuypers M M, Lavik G, Schalk J, Op den Camp H J, Jetten M S, Strous M. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology, 2007, 9(3): 635–642
CrossRef
Pubmed
Google scholar
|
[25] |
Schubert C J, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers M M. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environmental Microbiology, 2006, 8(10): 1857–1863
CrossRef
Pubmed
Google scholar
|
[26] |
Penton C R, Devol A H, Tiedje J M. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Applied and Environmental Microbiology, 2006, 72(10): 6829–6832
CrossRef
Pubmed
Google scholar
|
[27] |
Wang S, Zhu G, Peng Y, Jetten M S, Yin C. Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. Environmental Science & Technology, 2012, 46(16): 8834–8842
CrossRef
Pubmed
Google scholar
|
[28] |
Han P, Gu J D. Further analysis of anammox bacterial community structures along an anthropogenic nitrogen-input gradient from the riparian sediments of the Pearl River Delta to the deep-ocean sediments of the South China Sea. Geomicrobiology Journal, 2015, 32(9): 789–798
CrossRef
Google scholar
|
[29] |
Hou L J, Zheng Y L, Liu M, Gong J, Zhang X L, Yin G Y, You L. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research. Biogeosciences, 2013, 118(3): 1237–1246
CrossRef
Google scholar
|
[30] |
Nicholls J C, Trimmer M. Widespread occurrence of the anammox reaction in estuarine sediments. Aquatic Microbial Ecology, 2009, 55(2): 105–113
CrossRef
Google scholar
|
[31] |
Fernandes S O, Michotey V D, Guasco S, Bonin P C, Bharathi P A. Denitrification prevails over anammox in tropical mangrove sediments (Goa, India). Marine Environmental Research, 2012, 74: 9–19
CrossRef
Pubmed
Google scholar
|
[32] |
Koop-Jakobsen K, Giblin A E. Anammox in tidal marsh sediments: The role of salinity, nitrogen loading, and marsh vegetation. Estuaries and Coasts, 2009, 32(2): 238–245
CrossRef
Google scholar
|
[33] |
Sato Y, Ohta H, Yamagishi T, Guo Y, Nishizawa T, Rahman M H, Kuroda H, Kato T, Saito M, Yoshinaga I, Inubushi K, Suwa Y. Detection of anammox activity and 16S rRNA genes in ravine paddy field soil. Microbes and Environments, 2012, 27(3): 316–319
CrossRef
Pubmed
Google scholar
|
[34] |
.Hamersley M R, Woebken D, Boehrer B, Schultze M, Lavik G, Kuypers M M. Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany). Systematic and Applied Microbiology, 2009, 32(8): 571–582
CrossRef
Pubmed
Google scholar
|
[35] |
Dale O R, Tobias C R, Song B. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environmental Microbiology, 2009, 11(5): 1194–1207
CrossRef
Pubmed
Google scholar
|
[36] |
Fu B, Liu J, Yang H, Hsu T C, He B, Dai M, Kao S J, Zhao M, Zhang X H. Shift of anammox bacterial community structure along the Pearl Estuary and the impact of environmental factors. Journal of Geophysical Research. Oceans, 2015, 120(4): 2869–2883
CrossRef
Google scholar
|
[37] |
Wang J, Gu J D. Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China. Applied Microbiology and Biotechnology, 2013, 97(4): 1785–1798
CrossRef
Pubmed
Google scholar
|
[38] |
Rich J J, Dale O R, Song B, Ward B B. Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments. Microbial Ecology, 2008, 55(2): 311–320
CrossRef
Pubmed
Google scholar
|
[39] |
Zhu G, Wang S, Wang Y, Wang C, Risgaard-Petersen N, Jetten M S, Yin C. Anaerobic ammonia oxidation in a fertilized paddy soil. The ISME Journal, 2011, 5(12): 1905–1912
CrossRef
Pubmed
Google scholar
|
[40] |
Li M, Cao H, Hong Y G, Gu J D. Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes and Environments, 2011, 26(1): 15–22
CrossRef
Pubmed
Google scholar
|
[41] |
Sun W, Xu M Y, Wu W M, Guo J, Xia C Y, Sun G P, Wang A J. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. Journal of Applied Microbiology, 2014, 116(2): 464–476
CrossRef
Pubmed
Google scholar
|
[42] |
Moore T A. Detection of Anammox Bacteria in Ammonium-Contaminated Groundwater. Waterloo, Canada: University of Waterloo, 2011
|
[43] |
Zhao Y, Xia Y, Kana T M, Wu Y, Li X, Yan X. Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China. Chemosphere, 2013, 93(9): 2124–2131
CrossRef
Pubmed
Google scholar
|
[44] |
Lee K H, Wang Y F, Zhang G X, Gu J D. Distribution patterns of ammonia-oxidizing bacteria and anammox bacteria in the freshwater marsh of Honghe wetland in Northeast China. Ecotoxicology (London, England), 2014, 23(10): 1930–1942
CrossRef
Pubmed
Google scholar
|
[45] |
Naeher S, Huguet A, Roose-Amsaleg C L, Laverman A M, Fosse C, Lehmann M F, Derenne S, Zopfi J. Molecular and geochemical constraints on anaerobic ammonium oxidation (anammox) in a riparian zone of the Seine Estuary (France). Biogeochemistry, 2015, 123(1–2): 237–250
CrossRef
Google scholar
|
[46] |
Bernard R J, Mortazavi B, Kleinhuizen A A. Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO3− reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry, 2015, 125(1): 47–64
CrossRef
Google scholar
|
[47] |
Deng F, Hou L, Liu M, Zheng Y, Yin G, Li X, Lin X, Chen F, Gao J, Jiang X. Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary. Journal of Geophysical Research. Biogeosciences, 2015, 120(8): 1521–1531
CrossRef
Google scholar
|
[48] |
Long A, Heitman J, Tobias C, Philips R, Song B. Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Applied and Environmental Microbiology, 2013, 79(1): 168–176
CrossRef
Pubmed
Google scholar
|
[49] |
Humbert S, Tarnawski S, Fromin N, Mallet M P, Aragno M, Zopfi J. Molecular detection of anammox bacteria in terrestrial ecosystems: Distribution and diversity. The ISME Journal, 2010, 4(3): 450–454
CrossRef
Pubmed
Google scholar
|
[50] |
Hu B L, Rush D, van der Biezen E, Zheng P, van Mullekom M, Schouten S, Sinninghe Damsté J S, Smolders A J, Jetten M S, Kartal B. New anaerobic, ammonium-oxidizing community enriched from peat soil. Applied and Environmental Microbiology, 2011, 77(3): 966–971
CrossRef
Pubmed
Google scholar
|
[51] |
Rysgaard S, Glud R N, Sejr M K, Blicher M E, Stahl H J. Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biology, 2008, 31(5): 527–537
CrossRef
Google scholar
|
[52] |
Byrne N, Strous M, Crépeau V, Kartal B, Birrien J L, Schmid M, Lesongeur F, Schouten S, Jaeschke A, Jetten M, Prieur D, Godfroy A. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. The ISME Journal, 2009, 3(1): 117–123
CrossRef
Pubmed
Google scholar
|
[53] |
Jaeschke A, Op den Camp H J, Harhangi H, Klimiuk A, Hopmans E C, Jetten M S, Schouten S, Sinninghe Damsté J S. 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiology Ecology, 2009, 67(3): 343–350
CrossRef
Pubmed
Google scholar
|
[54] |
Hong Y G, Yin B, Zheng T L. Diversity and abundance of anammox bacterial community in the deep-ocean surface sediment from equatorial Pacific. Applied Microbiology and Biotechnology, 2011, 89(4): 1233–1241
CrossRef
Pubmed
Google scholar
|
[55] |
Thamdrup B, Dalsgaard T, Jensen M M, Ulloa O, Farias L, Escribano R. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnology and Oceanography, 2006, 51(5): 2145–2156
CrossRef
Google scholar
|
[56] |
Bulow S E, Rich J J, Naik H S, Pratihary A K, Ward B B. Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone. Deep-sea Research. Part I, Oceanographic Research Papers, 2010, 57(3): 384–393
CrossRef
Google scholar
|
[57] |
Pitcher A, Villanueva L, Hopmans E C, Schouten S, Reichart G J, Sinninghe Damsté J S. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. The ISME Journal, 2011, 5(12): 1896–1904
CrossRef
Pubmed
Google scholar
|
[58] |
Hamersley M R, Lavik G, Woebken D, Rattray J E, Lam P, Hopmans E C, Damste J S S, Kruger S, Graco M, Gutierrez D, Kuypers M M M. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography, 2007, 52(3): 923–933
CrossRef
Google scholar
|
[59] |
Rysgaard S, Glud R N, Risgaard Petersen N, Dalsgaard T. Denitrification and anammox activity in Arctic marine sediments. Limnology and Oceanography, 2004, 49(5): 1493–1502
CrossRef
Google scholar
|
[60] |
Gihring T M, Lavik G, Kuypers M M M, Kostka J E. Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway). Limnology and Oceanography, 2010, 55(2): 740–752
CrossRef
Google scholar
|
[61] |
Bale N J, Villanueva L, Fan H, Stal L J, Hopmans E C, Schouten S, Sinninghe Damsté J S. Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea. FEMS Microbiology Ecology, 2014, 89(1): 99–110
CrossRef
Pubmed
Google scholar
|
[62] |
Brandsma J, van de Vossenberg J, Risgaard-Petersen N, Schmid M C, Engström P, Eurenius K, Hulth S, Jaeschke A, Abbas B, Hopmans E C, Strous M, Schouten S, Jetten M S, Damsté J S. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden. Environmental Microbiology Reports, 2011, 3(3): 360–366
CrossRef
Pubmed
Google scholar
|
[63] |
Yang X R, Li H, Nie S A, Su J Q, Weng B S, Zhu G B, Yao H Y, Gilbert J A, Zhu Y G. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Applied and Environmental Microbiology, 2015, 81(3): 938–947
CrossRef
Pubmed
Google scholar
|
[64] |
Nie S, Li H, Yang X, Zhang Z, Weng B, Huang F, Zhu G B, Zhu Y G. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. The ISME Journal, 2015, 9(9): 2059–2067
CrossRef
Pubmed
Google scholar
|
[65] |
Shen L d, Zheng P h, Ma S j. Nitrogen loss through anaerobic ammonium oxidation in agricultural drainage ditches. Biology and Fertility of Soils, 2015, 52(2): 1–10
|
[66] |
Boog J, Nivala J, Aubron T, Wallace S, van Afferden M, Müller R A. Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland. Bioresource Technology, 2014, 162(0): 166–174
CrossRef
Pubmed
Google scholar
|
[67] |
van Niftrik L, Geerts W J C, van Donselaar E G, Humbel B M, Webb R I, Fuerst J A, Verkleij A J, Jetten M S M, Strous M. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. Journal of Bacteriology, 2008, 190(2): 708–717
CrossRef
Pubmed
Google scholar
|
[68] |
Rattray J E, van de Vossenberg J, Hopmans E C, Kartal B, van Niftrik L, Rijpstra W I C, Strous M, Jetten M S, Schouten S, Sinninghe Damsté J S. Ladderane lipid distribution in four genera of anammox bacteria. Archives of Microbiology, 2008, 190(1): 51–66
CrossRef
Pubmed
Google scholar
|
[69] |
Sinninghe Damsté J S, Strous M, Rijpstra W I C, Hopmans E C, Geenevasen J A J, van Duin A C T, van Niftrik L A, Jetten M S M. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature, 2002, 419(6908): 708–712
CrossRef
Pubmed
Google scholar
|
[70] |
van Niftrik L, van Helden M, Kirchen S, van Donselaar E G, Harhangi H R, Webb R I, Fuerst J A, Op den Camp H J, Jetten M S, Strous M. Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium “Candidatus Kuenenia stuttgartiensis”. Molecular Microbiology, 2010, 77(3): 701–715
CrossRef
Pubmed
Google scholar
|
[71] |
van Teeseling M C F, Mesman R J, Kuru E, Espaillat A, Cava F, Brun Y V, VanNieuwenhze M S, Kartal B, van Niftrik L. Anammox Planctomycetes have a peptidoglycan cell wall. Nature Communications, 2015, 6(1): 1–6
CrossRef
Pubmed
Google scholar
|
[72] |
Schalk J, Oustad H, Kuenen J G, Jetten M S. The anaerobic oxidation of hydrazine: A novel reaction in microbial nitrogen metabolism. FEMS Microbiology Letters, 1998, 158(1): 61–67
CrossRef
Pubmed
Google scholar
|
[73] |
Jetten M S, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M. Microbiology and application of the anaerobic ammonium oxidation (“anammox”) process. Current Opinion in Biotechnology, 2001, 12(3): 283–288
CrossRef
Pubmed
Google scholar
|
[74] |
Oshiki M, Ali M, Shinyako-Hata K, Satoh H, Okabe S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus Brocadia sinica”. Environmental Microbiology, 2016, 18(9): 3133–3143
CrossRef
Pubmed
Google scholar
|
[75] |
Dietl A, Ferousi C, Maalcke W J, Menzel A, de Vries S, Keltjens J T, Jetten M S, Kartal B, Barends T R. The inner workings of the hydrazine synthase multiprotein complex. Nature, 2015, 527(7578): 394–397
CrossRef
Pubmed
Google scholar
|
[76] |
Jetten M S, Niftrik L, Strous M, Kartal B, Keltjens J T, Op den Camp H J. Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44(2–3): 65–84
CrossRef
Pubmed
Google scholar
|
[77] |
van der Star W R, Dijkema C, de Waard P, Picioreanu C, Strous M, van Loosdrecht M C. An intracellular pH gradient in the anammox bacterium Kuenenia stuttgartiensis as evaluated by 31P NMR. Applied Microbiology and Biotechnology, 2010, 86(1): 311–317
CrossRef
Pubmed
Google scholar
|
[78] |
Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor M W, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh B E, Op den Camp H J, van der Drift C, Cirpus I, van de Pas-Schoonen K T, Harhangi H R, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen M A, Mewes H W, Weissenbach J, Jetten M S, Wagner M, Le Paslier D. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 2006, 440(7085): 790–794
CrossRef
Pubmed
Google scholar
|
[79] |
Kartal B, Maalcke W J, de Almeida N M, Cirpus I, Gloerich J, Geerts W, Op den Camp H J, Harhangi H R, Janssen-Megens E M, Francoijs K J, Stunnenberg H G, Keltjens J T, Jetten M S, Strous M. Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479(7371): 127–130
CrossRef
Pubmed
Google scholar
|
[80] |
Gori F, Tringe S G, Kartal B, Marchiori E, Jetten M S M. The metagenomic basis of anammox metabolism in Candidatus “Brocadia fulgida”. Biochemical Society Transactions, 2011, 39(6): 1799–1804
CrossRef
Pubmed
Google scholar
|
[81] |
Hu Z, Speth D R, Francoijs K J, Quan Z X, Jetten M S. Metagenome analysis of a complex community reveals the metabolic blueprint of anammox bacterium “Candidatus Jettenia asiatica”. Frontiers in Microbiology, 2012, 3: 366
CrossRef
Pubmed
Google scholar
|
[82] |
Fuchsman C A, Rocap G. Whole-genome reciprocal BLAST analysis reveals that planctomycetes do not share an unusually large number of genes with Eukarya and Archaea. Applied and Environmental Microbiology, 2006, 72(10): 6841–6844
CrossRef
Pubmed
Google scholar
|
[83] |
De Clippeleir H, Defoirdt T, Vanhaecke L, Vlaeminck S E, Carballa M, Verstraete W, Boon N. Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied Microbiology and Biotechnology, 2011, 90(4): 1511–1519
CrossRef
Pubmed
Google scholar
|
[84] |
Kartal B, Koleva M, Arsov R, van der Star W, Jetten M S, Strous M. Adaptation of a freshwater anammox population to high salinity wastewater. Journal of Biotechnology, 2006, 126(4): 546–553
CrossRef
Pubmed
Google scholar
|
[85] |
Kartal B, Rattray J, van Niftrik L A, van de Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Damsté J S, Jetten M S, Strous M. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 2007, 30(1): 39–49
CrossRef
Pubmed
Google scholar
|
[86] |
Strous M, Kuenen J G, Jetten M S. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 1999, 65(7): 3248–3250
Pubmed
|
[87] |
Sonthiphand P, Hall M W, Neufeld J D. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Frontiers in Microbiology, 2014, 5: 1–14
CrossRef
Pubmed
Google scholar
|
[88] |
Lam P, Jensen M M, Lavik G, McGinnis D F, Müller B, Schubert C J, Amann R, Thamdrup B, Kuypers M M. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17): 7104–7109
CrossRef
Pubmed
Google scholar
|
[89] |
Woebken D, Fuchs B M, Kuypers M M, Amann R. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Applied and Environmental Microbiology, 2007, 73(14): 4648–4657
CrossRef
Pubmed
Google scholar
|
[90] |
Sliekers A O, Haaijer S, Schmid M, Harhangi H, Verwegen K, Kuenen J G, Jetten M S. Nitrification and anammox with urea as the energy source. Systematic and Applied Microbiology, 2004, 27(3): 271–278
CrossRef
Pubmed
Google scholar
|
[91] |
Vázquez-Padín J, Mosquera-Corral A, Campos J L, Méndez R, Revsbech N P. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Research, 2010, 44(15): 4359–4370
CrossRef
Pubmed
Google scholar
|
[92] |
van Kessel M A, Speth D R, Albertsen M, Nielsen P H, Op den Camp H J, Kartal B, Jetten M S, Lücker S. Complete nitrification by a single microorganism. Nature, 2015, 528(7583): 555–559
CrossRef
Pubmed
Google scholar
|
[93] |
Dalsgaard T, Thamdrup B, Farias L, Revsbech N P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography, 2012, 57(5): 1331–1346
CrossRef
Google scholar
|
[94] |
Du R, Cao S, Li B, Niu M, Wang S, Peng Y. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Research, 2017, 108: 46–56
CrossRef
Pubmed
Google scholar
|
[95] |
Zhang X, Zhang H, Ye C, Wei M, Du J. Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors. Bioresource Technology, 2015, 189: 302–308
CrossRef
Pubmed
Google scholar
|
[96] |
Okabe S, Oshiki M, Takahashi Y, Satoh H. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules. Water Research, 2011, 45(19): 6461–6470
CrossRef
Pubmed
Google scholar
|
[97] |
Ding J, Fu L, Ding Z W, Lu Y Z, Cheng S H, Zeng R J. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field. Applied Microbiology and Biotechnology, 2015, 100(1): 1–8
Pubmed
|
[98] |
Kindaichi T, Yuri S, Ozaki N, Ohashi A. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Science and Technology, 2012, 66(12): 2556–2561
CrossRef
Pubmed
Google scholar
|
[99] |
Prokopenko M G, Hirst M B, De Brabandere L, Lawrence D J, Berelson W M, Granger J, Chang B X, Dawson S, Crane E J 3rd, Chong L, Thamdrup B, Townsend-Small A, Sigman D M. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia. Nature, 2013, 500(7461): 194–198
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |