Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals

Weiqi Luo , Yanping Ji , Lu Qu , Zhi Dang , Yingying Xie , Chengfang Yang , Xueqin Tao , Jianmin Zhou , Guining Lu

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 4

PDF (467KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 4 DOI: 10.1007/s11783-018-1026-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals

Author information +
History +
PDF (467KB)

Abstract

The eggshell was used to remediate the contaminated soil by heavy metals.

The eggshell addition decreased the available state of the heavy metals.

The available calcium in the soil increased due to eggshell addition.

The efficiency was investigated in different moisture conditions.

In this study, effects of water conditions (flooded, wet, or dry) and eggshell dosages (0, 0.1, 1.0, and 10.0 g/kg soil, respectively) on pH variation, content of unavailable state of heavy metals, form of heavy metals, and available nutritious element calcium (Ca) in acid soils contaminated with heavy metals were investigated, respectively. The soil samples were continuously cultivated indoors and analyzed by toxicity characteristic leaching procedure and community bureau of reference (BCR) sequential extraction procedure. The results showed that the addition of eggshell could effectively improve the pH of acid soil and increase it to neutral level. Moreover, the contents of unavailable state of heavy metals Cu, Zn, and Cd increased significantly. Furthermore, when the soil was cultivated under the flooded condition with 1.0 g/kg eggshell, the unavailable state of Cu, Zn, and Cd increased the most, and these heavy metals were transformed into residual state. On the other hand, the amount of available state of Ca increased to 432.19 from 73.34 mg/kg with the addition of 1.0 g/kg eggshell, which indicated that the addition of eggshell dramatically improved the available state of Ca. Therefore, eggshell could ameliorate the soil environment as it led to the decrease of available heavy metals and improvement of fertilization effectively. In a word, this study indicates that the addition of eggshell would be a new potential method for remediation of acid field soils contaminated with heavy metals.

Graphical abstract

Keywords

Heavy metals / Eggshell / Acid soil remediation / BCR sequential extraction

Cite this article

Download citation ▾
Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals. Front. Environ. Sci. Eng., 2018, 12(3): 4 DOI:10.1007/s11783-018-1026-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xie L HTang  S QWei  X JShao  G NJiao  G ASheng  Z HLuo  JHu P S. The cadmium and lead content of the grain produced by leading Chinese rice cultivars. Food Chemistry2017217: 217–224 

[2]

França F C S S Albuuerque A M A Almeida A C Silveira P B Filho C A Hazin C A Honorato E V. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chemistry2017215: 171–176

[3]

Li BWang  YJiang Y Li GCui  JWang Y Zhang H Wang SXu  SWang R. The accumulation and health risk of heavy metals in vegetables around a zinc smelter in northeastern China. Environmental Science and Pollution Research International201623(24): 25114–25126

[4]

Yin HTan  NLiu C Wang JLiang  XQu M Feng XQiu  GTan W Liu F. The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China. Chemosphere2016161: 181–189

[5]

Yang C FLu  G NChen  M QXie  Y YGuo  C LReinfelder  JYi X Y Wang HDang  Z. Spatial and temporal distributions of sulfur species in paddy soils affected by acid mine drainage in Dabaoshan sulfide mining area, South China. Geoderma2016281: 21–29

[6]

Zalamea MGonzalez  GLodge DJ. Physical, chemical, and biological properties of soil under decaying wood in a tropical wet forest in Puerto Rico. Forests20167(8): 168

[7]

Cadmus PClements  W HWilliamson  J LRanville  J FMeyer  J SGinés  M J G. The use of field and mesocosm experiments to quantify effects of physical and chemical stressors in mining-contaminated streams. Environmental Science & Technology201650(14): 7825–7833

[8]

Zhu R BMa  G JCai  Y SChen  Y XYang  TDuan B Y Xue Z L. Ceramic tiles with black pigment made from stainless steel plant dust: Physical properties and long-term leaching behavior of heavy metals. Journal of the Air & Waste Management Association (1995)201666(4): 402–411

[9]

Xu YZhou  N Y. Microbial remediation of aromatics-contaminated soil. Frontiers of Environmental Science & Engineering201711(2): 1 

[10]

Bolan NKunhikrishnan  AThangarajan R Kumpiene J Park JMakino  TKirkham M B Scheckel K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? Journal of Hazardous Materials2014266: 141–166 

[11]

Theodoratos PPapassiopi  NXenidis A. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion. Journal of Hazardous Materials200294(2): 135–146

[12]

Wessolek GFahrenhorst  C. Immobilization of heavy metals in a polluted soil of a sewage farm by application of a modified aluminosilicate: a laboratory and numerical displacement study. Soil Technology19947(3): 221–232

[13]

13Sun Y B Zhao DXu  Y YWang  LLiang X F Shen Y. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Frontiers of Environmental Science & Engineering, 201610(1): 85–92 

[14]

Singh B ROste  L. In situ immobilization of metals in contaminated or naturally metal-rich soils. Environmental Review20019(2): 81–97 

[15]

Chi TZuo  JLiu F L. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar.  Frontiers of Environmental Science & Engineering201711(2): 15 

[16]

Hong C OLee  D KChung  D YKim  P J. Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Archives of Environmental Contamination and Toxicology200752(4): 496–502

[17]

Seshadri BBolan  N SWijesekara  HKunhikrishnan A Thangarajan R Qi FMatheyarasu  RRocco C Mbene K Naidu R. Phosphorus-cadmium interactions in paddy soils. Geoderma2016270: 43–59 

[18]

Yun S WPark  C GJeon  J HDarnault  C JBaveye  P CYu  C. Dissolution behavior of As and Cd in submerged paddy soil after treatment with stabilizing agents. Geoderma2016270: 10–20

[19]

Adcock K GGartrell  J WBrennan  R F. Calcium deficiency of wheat grown in acidic sandy soil from Southwestern Australia. Journal of Plant Nutrition200124(8): 1217–1227

[20]

Lee S SLim  J EEl-Azeem  S A M AChoi  BOh S E Moon D H Ok Y S. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Science and Pollution Research International201320(3): 1719–1726

[21]

Mittal ATeotia  MSoni R K Mittal J. Applications of egg shell and egg shell membrane as adsorbents: a review. Journal of Molecular Liquids2016223: 376–387

[22]

Rauret GLópez-Sánchez  J FSahuquillo  ABarahona E Lachica M Ure A M Davidson C M Gomez A Lück D Bacon J Yli-Halla M Muntau H Quevauviller P. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring20002(3): 228–233

[23]

Charrier MMarie  AGuillaume D Bédouet L Le Lannic J Roiland C Berland S Pierre J S Le Floch M Frenot Y Lebouvier M. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri. PLoS One20138(12): e84527 

[24]

Janoš PVávrová  JHerzogová L Pilařová V. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma2010159(3–4): 335–341

[25]

Sungur ASoylak  MOzcan H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chemical Speciation and Bioavailability201426(4): 219–230

[26]

Ministry of Environmental Protection of the People’s Republic of China. Environmental quality standard for soil (15618–1995). Beijing: Standards Press of China, 1995 (in Chinese)

[27]

Nobuntou WParkpian  POanh N T K Noomhorm A Delaune R D Jugsujinda A. Lead distribution and its potential risk to the environment: lesson learned from environmental monitoring of abandon mine. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering201045(13): 1702–1714 

[28]

Zhuang PMcBride  M BXia  HLi N Li Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. The Science of the Total Environment2009407(5): 1551–1561 

[29]

Ok Y SLee  S SJeon  W TOh  S EUsman  A RMoon  D H. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health201133(S1): 31–39

[30]

Nur Aini I N Ezrin M H Aimrun W. Relationship between soil apparent electrical conductivity and pH value of Jawa series in oil palm plantation. Agriculture and Agricultural Science Procedia20142: 199–206 

[31]

Oh CHan  Y SPark  J HBok  SCheong Y Yim GJi  S. Field application of selective precipitation for recovering Cu and Zn in drainage discharged from an operating mine. The Science of the Total Environment2016557 558: 212–220

[32]

Pontoni LVan Hullebusch  E DPechaud  YFabbricino M Esposito G Pirozzi F. Colloidal mobilization and fate of trace heavy metals in semi-saturated artificial soil (OECD) irrigated with treated wastewater. Sustainability20168(12): 1257

[33]

Bangira CLoeppert  R HMoore  T JHons  F MShahandeh  H. Relative effectiveness of CaCO3 and Ca (OH)2 in minimizing metals solubility in contaminated sediment. Journal of Soils and Sediments201717(6): 1796–1805 

[34]

Kumpiene JLagerkvist  AMaurice C.Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–A review. Waste Management200828(1): 215–225

[35]

Cao XMa  L Q. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environmental Pollution (Barking, Essex: 1987)2004132(3): 435–442

[36]

Zeng LZhu  TGao Y Wang YNing  CBjörn L O Chen DLi  S. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana. Ecotoxicology and Environmental Safety2017139: 228–237

[37]

Prasad M N V. Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany199535(4): 525–545 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (467KB)

2637

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/