Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals

Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu

PDF(467 KB)
PDF(467 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 4. DOI: 10.1007/s11783-018-1026-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals

Author information +
History +

Highlights

The eggshell was used to remediate the contaminated soil by heavy metals.

The eggshell addition decreased the available state of the heavy metals.

The available calcium in the soil increased due to eggshell addition.

The efficiency was investigated in different moisture conditions.

Abstract

In this study, effects of water conditions (flooded, wet, or dry) and eggshell dosages (0, 0.1, 1.0, and 10.0 g/kg soil, respectively) on pH variation, content of unavailable state of heavy metals, form of heavy metals, and available nutritious element calcium (Ca) in acid soils contaminated with heavy metals were investigated, respectively. The soil samples were continuously cultivated indoors and analyzed by toxicity characteristic leaching procedure and community bureau of reference (BCR) sequential extraction procedure. The results showed that the addition of eggshell could effectively improve the pH of acid soil and increase it to neutral level. Moreover, the contents of unavailable state of heavy metals Cu, Zn, and Cd increased significantly. Furthermore, when the soil was cultivated under the flooded condition with 1.0 g/kg eggshell, the unavailable state of Cu, Zn, and Cd increased the most, and these heavy metals were transformed into residual state. On the other hand, the amount of available state of Ca increased to 432.19 from 73.34 mg/kg with the addition of 1.0 g/kg eggshell, which indicated that the addition of eggshell dramatically improved the available state of Ca. Therefore, eggshell could ameliorate the soil environment as it led to the decrease of available heavy metals and improvement of fertilization effectively. In a word, this study indicates that the addition of eggshell would be a new potential method for remediation of acid field soils contaminated with heavy metals.

Graphical abstract

Keywords

Heavy metals / Eggshell / Acid soil remediation / BCR sequential extraction

Cite this article

Download citation ▾
Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals. Front. Environ. Sci. Eng., 2018, 12(3): 4 https://doi.org/10.1007/s11783-018-1026-y

References

[1]
Xie L H, Tang  S Q, Wei  X J, Shao  G N, Jiao  G A, Sheng  Z H, Luo  J, Hu P S. The cadmium and lead content of the grain produced by leading Chinese rice cultivars. Food Chemistry, 2017, 217: 217–224 
CrossRef Pubmed Google scholar
[2]
França F C S S,  Albuuerque A M A,  Almeida A C,  Silveira P B,  Filho C A,  Hazin C A,  Honorato E V. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chemistry, 2017, 215: 171–176
CrossRef Pubmed Google scholar
[3]
Li B, Wang  Y, Jiang Y,  Li G, Cui  J, Wang Y,  Zhang H,  Wang S, Xu  S, Wang R. The accumulation and health risk of heavy metals in vegetables around a zinc smelter in northeastern China. Environmental Science and Pollution Research International, 2016, 23(24): 25114–25126
CrossRef Pubmed Google scholar
[4]
Yin H, Tan  N, Liu C,  Wang J, Liang  X, Qu M,  Feng X, Qiu  G, Tan W,  Liu F. The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China. Chemosphere, 2016, 161: 181–189
CrossRef Pubmed Google scholar
[5]
Yang C F, Lu  G N, Chen  M Q, Xie  Y Y, Guo  C L, Reinfelder  J, Yi X Y,  Wang H, Dang  Z. Spatial and temporal distributions of sulfur species in paddy soils affected by acid mine drainage in Dabaoshan sulfide mining area, South China. Geoderma, 2016, 281: 21–29
CrossRef Google scholar
[6]
Zalamea M, Gonzalez  G, Lodge DJ. Physical, chemical, and biological properties of soil under decaying wood in a tropical wet forest in Puerto Rico. Forests, 2016, 7(8): 168
CrossRef Google scholar
[7]
Cadmus P, Clements  W H, Williamson  J L, Ranville  J F, Meyer  J S, Ginés  M J G. The use of field and mesocosm experiments to quantify effects of physical and chemical stressors in mining-contaminated streams. Environmental Science & Technology, 2016, 50(14): 7825–7833
CrossRef Pubmed Google scholar
[8]
Zhu R B, Ma  G J, Cai  Y S, Chen  Y X, Yang  T, Duan B Y,  Xue Z L. Ceramic tiles with black pigment made from stainless steel plant dust: Physical properties and long-term leaching behavior of heavy metals. Journal of the Air & Waste Management Association (1995), 2016, 66(4): 402–411
CrossRef Pubmed Google scholar
[9]
Xu Y, Zhou  N Y. Microbial remediation of aromatics-contaminated soil. Frontiers of Environmental Science & Engineering, 2017, 11(2): 1 
CrossRef Google scholar
[10]
Bolan N, Kunhikrishnan  A, Thangarajan R,  Kumpiene J,  Park J, Makino  T, Kirkham M B,  Scheckel K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? Journal of Hazardous Materials, 2014, 266: 141–166 
CrossRef Pubmed Google scholar
[11]
Theodoratos P, Papassiopi  N, Xenidis A. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion. Journal of Hazardous Materials, 2002, 94(2): 135–146
CrossRef Pubmed Google scholar
[12]
Wessolek G, Fahrenhorst  C. Immobilization of heavy metals in a polluted soil of a sewage farm by application of a modified aluminosilicate: a laboratory and numerical displacement study. Soil Technology, 1994, 7(3): 221–232
CrossRef Google scholar
[13]
13. Sun Y B,  Zhao D, Xu  Y Y, Wang  L, Liang X F,  Shen Y. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Frontiers of Environmental Science & Engineering, 2016, 10(1): 85–92 
CrossRef Google scholar
[14]
Singh B R, Oste  L. In situ immobilization of metals in contaminated or naturally metal-rich soils. Environmental Review, 2001, 9(2): 81–97 
CrossRef Google scholar
[15]
Chi T, Zuo  J, Liu F L. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar.  Frontiers of Environmental Science & Engineering, 2017, 11(2): 15 
CrossRef Google scholar
[16]
Hong C O, Lee  D K, Chung  D Y, Kim  P J. Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Archives of Environmental Contamination and Toxicology, 2007, 52(4): 496–502
CrossRef Pubmed Google scholar
[17]
Seshadri B, Bolan  N S, Wijesekara  H, Kunhikrishnan A,  Thangarajan R,  Qi F, Matheyarasu  R, Rocco C,  Mbene K,  Naidu R. Phosphorus-cadmium interactions in paddy soils. Geoderma, 2016, 270: 43–59 
CrossRef Google scholar
[18]
Yun S W, Park  C G, Jeon  J H, Darnault  C J, Baveye  P C, Yu  C. Dissolution behavior of As and Cd in submerged paddy soil after treatment with stabilizing agents. Geoderma, 2016, 270: 10–20
CrossRef Google scholar
[19]
Adcock K G, Gartrell  J W, Brennan  R F. Calcium deficiency of wheat grown in acidic sandy soil from Southwestern Australia. Journal of Plant Nutrition, 2001, 24(8): 1217–1227
CrossRef Google scholar
[20]
Lee S S, Lim  J E, El-Azeem  S A M A, Choi  B, Oh S E,  Moon D H,  Ok Y S. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Science and Pollution Research International, 2013, 20(3): 1719–1726
CrossRef Pubmed Google scholar
[21]
Mittal A, Teotia  M, Soni R K,  Mittal J. Applications of egg shell and egg shell membrane as adsorbents: a review. Journal of Molecular Liquids, 2016, 223: 376–387
CrossRef Google scholar
[22]
Rauret G, López-Sánchez  J F, Sahuquillo  A, Barahona E,  Lachica M,  Ure A M,  Davidson C M,  Gomez A,  Lück D,  Bacon J,  Yli-Halla M,  Muntau H,  Quevauviller P. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2000, 2(3): 228–233
CrossRef Pubmed Google scholar
[23]
Charrier M, Marie  A, Guillaume D,  Bédouet L,  Le Lannic J,  Roiland C,  Berland S,  Pierre J S,  Le Floch M,  Frenot Y,  Lebouvier M. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri. PLoS One, 2013, 8(12): e84527 
CrossRef Pubmed Google scholar
[24]
Janoš P, Vávrová  J, Herzogová L,  Pilařová V. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma, 2010, 159(3–4): 335–341
CrossRef Google scholar
[25]
Sungur A, Soylak  M, Ozcan H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chemical Speciation and Bioavailability, 2014, 26(4): 219–230
CrossRef Google scholar
[26]
Ministry of Environmental Protection of the People’s Republic of China. Environmental quality standard for soil (15618–1995). Beijing: Standards Press of China, 1995 (in Chinese)
[27]
Nobuntou W, Parkpian  P, Oanh N T K,  Noomhorm A,  Delaune R D,  Jugsujinda A. Lead distribution and its potential risk to the environment: lesson learned from environmental monitoring of abandon mine. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2010, 45(13): 1702–1714 
CrossRef Pubmed Google scholar
[28]
Zhuang P, McBride  M B, Xia  H, Li N,  Li Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. The Science of the Total Environment, 2009, 407(5): 1551–1561 
CrossRef Pubmed Google scholar
[29]
Ok Y S, Lee  S S, Jeon  W T, Oh  S E, Usman  A R, Moon  D H. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health, 2011, 33(S1): 31–39
CrossRef Pubmed Google scholar
[30]
Nur Aini I N,  Ezrin M H,  Aimrun W. Relationship between soil apparent electrical conductivity and pH value of Jawa series in oil palm plantation. Agriculture and Agricultural Science Procedia, 2014, 2: 199–206 
CrossRef Google scholar
[31]
Oh C, Han  Y S, Park  J H, Bok  S, Cheong Y,  Yim G, Ji  S. Field application of selective precipitation for recovering Cu and Zn in drainage discharged from an operating mine. The Science of the Total Environment, 2016, 557– 558: 212–220
CrossRef Pubmed Google scholar
[32]
Pontoni L, Van Hullebusch  E D, Pechaud  Y, Fabbricino M,  Esposito G,  Pirozzi F. Colloidal mobilization and fate of trace heavy metals in semi-saturated artificial soil (OECD) irrigated with treated wastewater. Sustainability, 2016, 8(12): 1257
CrossRef Google scholar
[33]
Bangira C, Loeppert  R H, Moore  T J, Hons  F M, Shahandeh  H. Relative effectiveness of CaCO3 and Ca (OH)2 in minimizing metals solubility in contaminated sediment. Journal of Soils and Sediments, 2017, 17(6): 1796–1805 
CrossRef Google scholar
[34]
Kumpiene J, Lagerkvist  A, Maurice C.Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–A review. Waste Management, 2008, 28(1): 215–225
[35]
Cao X, Ma  L Q. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environmental Pollution (Barking, Essex: 1987), 2004, 132(3): 435–442
CrossRef Pubmed Google scholar
[36]
Zeng L, Zhu  T, Gao Y,  Wang Y, Ning  C, Björn L O,  Chen D, Li  S. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 2017, 139: 228–237
CrossRef Pubmed Google scholar
[37]
Prasad M N V. Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 1995, 35(4): 525–545 
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos.41330639 & 41720104004), the National Key Research and Development Program of China (No. 2017YFD0801000), the National Key Technology Support Program (No. 2015BAD05B05), the Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2015A030306005), and the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (No. 2015TQ01Z233).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(467 KB)

Accesses

Citations

Detail

Sections
Recommended

/