Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions

Pan Gao, Yuan Song, Shaoning Wang, Claude Descorme, Shaoxia Yang

PDF(302 KB)
PDF(302 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 8. DOI: 10.1007/s11783-018-1025-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions

Author information +
History +

Highlights

Fe2O3-CeO2-Bi2O3/γ-Al2O3, an environmental friendly material, was investigated.

The catalyst exhibited good catalytic performance in the CWAO of cationic red GTL.

The apparent activation energy for the reaction was 79 kJ·mol−1.

HO2· and O2· appeared as the main reactive species in the reaction.

Abstract

The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst, a novel environmental-friendly material, was used to investigate the catalytic wet air oxidation (CWAO) of cationic red GTL under mild operating conditions in a batch reactor. The catalyst was prepared by wet impregnation, and characterized by special surface area (BET measurement), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst exhibited good catalytic activity and stability in the CWAO under atmosphere pressure. The effect of the reaction conditions (catalyst loading, degradation temperature, solution concentration and initial solution pH value) was studied. The result showed that the decolorization efficiency of cationic red GTL was improved with increasing the initial solution pH value and the degradation temperature. The apparent activation energy for the reaction was 79 kJ·mol1. Hydroperoxy radicals (HO2·) and superoxide radicals (O2·) appeared as the main reactive species upon the CWAO of cationic red GTL.

Graphical abstract

Keywords

Catalytic wet air oxidation (CWAO) / Advanced oxidation processes (AOPs) / Iron oxide catalyst / Industrial wastewater

Cite this article

Download citation ▾
Pan Gao, Yuan Song, Shaoning Wang, Claude Descorme, Shaoxia Yang. Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions. Front. Environ. Sci. Eng., 2018, 12(1): 8 https://doi.org/10.1007/s11783-018-1025-z

References

[1]
Sang  H L,  Carberry  J B. Biodegradation of PCP enhanced by chemical oxidation pretreatment.  Water Environment Research, 1992, 64(5): 682–690
CrossRef Google scholar
[2]
Tian  S C,  Li  Y B,  Zhao  X. Cyanide removal with a copper/active carbon fiber cathode via a combined oxidation of a Fenton-like reaction and in situ generated copper oxides at anode.  Electrochimica Acta, 2015, 180: 746–755
CrossRef Google scholar
[3]
Liao  G, Zhu   D, Li  L,  Lan  B. Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation.  Journal of Hazardous Materials, 2014, 280: 531–535
CrossRef Pubmed Google scholar
[4]
Wang  Y B,  Zhao  H,  Zhao  G. Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants.  Applied Catalysis B: Environmental, 2015, 164: 396–406
CrossRef Google scholar
[5]
Xiao  J D,  Xie  Y B,  Nawaz  F,  Jin  S,  Duan  F,  Li  M J,  Cao  H B. Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination.  Applied Catalysis B: Environmental, 2016, 181: 420–428
CrossRef Google scholar
[6]
Luck  F. Wet air oxidation: Past, present and future.  Catalysis Today, 1999, 53(1): 81–91
CrossRef Google scholar
[7]
Kim  K H,  Ihm  S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review.  Journal of Hazardous Materials, 2011, 186(1): 16–34
CrossRef Pubmed Google scholar
[8]
Mezohegyi  G, Erjavec   B, Kaplan  R,  Pintar  A. Removal of bisphenol A and its oxidation products from aqueous solutions by sequential catalytic wet air oxidation and biodegradation.  Industrial & Engineering Chemistry Research, 2013, 52(26): 9301–9307
CrossRef Google scholar
[9]
Wang  J B,  Zhu  W P,  Yang  S X,  Wang  W,  Zhou  Y R. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts.  Applied Catalysis B: Environmental, 2008, 78(1–2): 30–37
CrossRef Google scholar
[10]
Yang  S X,  Besson  M,  Descorme  C. Catalytic wet air oxidation of succinic acid over Ru and Pt catalysts supported on CexZr1−xO2 mixed oxides.  Applied Catalysis B: Environmental, 2015, 165(165): 1–9
CrossRef Google scholar
[11]
De los Monteros  A E,  Lafaye  G,  Cervantes  A,  Del Angel  G,  Barbier  JJr. Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides.  Catalysis Today, 2015, 258: 564–569
CrossRef Google scholar
[12]
Szabados  E, Sagi   G, Somodi  F,  Maroti  B,  Sranko  D,  Tungler  A. Wet air oxidation of paracetamol over precious metal/Ti mesh monolith catalyst.  Journal of Industrial and Engineering Chemistry, 2017, 46: 364–372
CrossRef Google scholar
[13]
Xu  A, Sun   C. Catalytic behaviour and copper leaching of Cu0.10Zn0.90Al1.90Fe0.10O4 spinel for catalytic wet air oxidation of phenol.  Environmental Technology, 2012, 33(10–12): 1339–1344
CrossRef Pubmed Google scholar
[14]
Ersöz  G,  Atalay  S. Treatment of aniline by catalytic wet air oxidation: Comparative study over CuO/CeO2 and NiO/Al2O3.  Journal of Environmental Management, 2012, 113(4): 244–250
CrossRef Pubmed Google scholar
[15]
Ma  C J, Wen   Y Y, Yue   Q Q, Li   A Q, Fu   J L, Zhang   N, Gai  H,  Zheng  J,  Chen  B H. Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx-CeO2.  RSC Advances, 2017, 7(43): 27079–27088
CrossRef Google scholar
[16]
Rocha  R P,  Silva A M T,  Romero S M M,  Pereira M F R,  Figueiredo J L. The role of O- and S-containing surface groups on carbon nanotubes for the elimination of organic pollutants by catalytic wet air oxidation.  Applied Catalysis B: Environmental, 2014, 147(14): 314–321
CrossRef Google scholar
[17]
Yang  S, Cui   Y, Sun  Y,  Yang  H. Graphene oxide as an effective catalyst for wet air oxidation of phenol.  Journal of Hazardous Materials, 2014, 280: 55–62
CrossRef Pubmed Google scholar
[18]
Ma  H, Zhuo   Q, Wang  B. Characteristics of CuO-MoO3-P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions.  Environmental Science & Technology, 2007, 41(21): 7491–7496
CrossRef Pubmed Google scholar
[19]
Yang  S X,  Besson  M,  Descorme  C. Catalytic wet air oxidation of formic acid over Pt/CexZr1−xO2 catalysts at low temperature and atmospheric pressure.  Applied Catalysis B: Environmental, 2010, 100(1–2): 282–288
[20]
Xu  Y, Li   X, Cheng  X,  Sun  D,  Wang  X. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.  Environmental Science & Technology, 2012, 46(5): 2856–2863
CrossRef Pubmed Google scholar
[21]
Zou  L, Wang   Q, Wang  Z,  Jin  L,  Liu  R J,  Shen  X Q. Rapid decolorization of methyl blue in aqueous solution by recyclable microchannel-like La0.8K0.2FeOhollow microfibers.  Industrial & Engineering Chemistry Research, 2013, 53(2): 658–663
CrossRef Google scholar
[22]
Quintanilla  A,  Casas  J A,  Rodríguez  J J. Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts.  Applied Catalysis B: Environmental, 2007, 76(1–2): 135–145
CrossRef Google scholar
[23]
di Luca  C,  Ivorra  F,  Massa  P,  Fenoglio  R. Iron-alumina synergy in the heterogeneous Fenton-type peroxidation of phenol solutions.  Chemical Engineering Journal, 2015, 268: 280–289
CrossRef Google scholar
[24]
Zhu  W, Bin   Y, Li  Z,  Jiang  Z,  Yin  T. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater.  Water Research, 2002, 36(8): 1947–1954
CrossRef Pubmed Google scholar
[25]
Wang  X M,  Waite  T D. Role of gelling soluble and colloidal microbial products in membrane fouling.  Environmental Science & Technology, 2009, 43(24): 9341–9347
CrossRef Pubmed Google scholar
[26]
Noh  J S,  Schwarz  J A. Effect of HNO3 treatment on the surface acidity of activated carbons.  Carbon, 1990, 28(5): 675–682
CrossRef Google scholar
[27]
Karpel  N, Leitner   V, Fu  H X. pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts. Topics in Catalysis, 2005, 33(1–4): 249–256
[28]
Descostes  M, Mercier   F, Thromat  N,  Beaucaire  C,  Gautier-Soyer  M. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium.  Applied Surface Science, 2000, 165(4): 288–302
CrossRef Google scholar
[29]
Guo  L Q,  Chen  F,  Fan  X Q,  Cai  W D,  Zhang  J L. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst toward the degradation of acid orange 7 and phenol.  Applied Catalysis B: Environmental, 2010, 96(1–2): 162–168
CrossRef Google scholar
[30]
Barbier  JJr, Delanoë   F, Jabouille  F,  Duprez  D,  Blanchard  G,  Isnard  P. Total oxidation of acetic acid in aqueous solutions over noble metal catalysts.  Journal of Catalysis, 1998, 177(2): 378–385
CrossRef Google scholar
[31]
Rosenfeldt  E J,  Linden  K G,  Canonica  S,  von Gunten  U. Comparison of the efficiency of ·OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.  Water Research, 2006, 40(20): 3695–3704
CrossRef Pubmed Google scholar
[32]
Yang  Y, Jiang   J, Lu  X,  Ma  J,  Liu  Y. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process.  Environmental Science & Technology, 2015, 49(12): 7330–7339
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21547008 & 51206045), School featured projects (No. TS2016HBDL16) and Fundamental Research Funds for Central Universities (No. 2015 MS21).ƒ

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-018-1025-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(302 KB)

Accesses

Citations

Detail

Sections
Recommended

/