Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions

Pan Gao , Yuan Song , Shaoning Wang , Claude Descorme , Shaoxia Yang

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 8

PDF (302KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 8 DOI: 10.1007/s11783-018-1025-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions

Author information +
History +
PDF (302KB)

Abstract

Fe2O3-CeO2-Bi2O3/γ-Al2O3, an environmental friendly material, was investigated.

The catalyst exhibited good catalytic performance in the CWAO of cationic red GTL.

The apparent activation energy for the reaction was 79 kJ·mol−1.

HO2· and O2· appeared as the main reactive species in the reaction.

The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst, a novel environmental-friendly material, was used to investigate the catalytic wet air oxidation (CWAO) of cationic red GTL under mild operating conditions in a batch reactor. The catalyst was prepared by wet impregnation, and characterized by special surface area (BET measurement), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst exhibited good catalytic activity and stability in the CWAO under atmosphere pressure. The effect of the reaction conditions (catalyst loading, degradation temperature, solution concentration and initial solution pH value) was studied. The result showed that the decolorization efficiency of cationic red GTL was improved with increasing the initial solution pH value and the degradation temperature. The apparent activation energy for the reaction was 79 kJ·mol1. Hydroperoxy radicals (HO2·) and superoxide radicals (O2·) appeared as the main reactive species upon the CWAO of cationic red GTL.

Graphical abstract

Keywords

Catalytic wet air oxidation (CWAO) / Advanced oxidation processes (AOPs) / Iron oxide catalyst / Industrial wastewater

Cite this article

Download citation ▾
Pan Gao, Yuan Song, Shaoning Wang, Claude Descorme, Shaoxia Yang. Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions. Front. Environ. Sci. Eng., 2018, 12(1): 8 DOI:10.1007/s11783-018-1025-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sang  H L Carberry  J B. Biodegradation of PCP enhanced by chemical oxidation pretreatment.  Water Environment Research199264(5): 682–690

[2]

Tian  S C Li  Y B Zhao  X. Cyanide removal with a copper/active carbon fiber cathode via a combined oxidation of a Fenton-like reaction and in situ generated copper oxides at anode.  Electrochimica Acta2015180: 746–755

[3]

Liao  GZhu   DLi  L Lan  B. Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation.  Journal of Hazardous Materials2014280: 531–535

[4]

Wang  Y B Zhao  H Zhao  G. Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants.  Applied Catalysis B: Environmental2015164: 396–406

[5]

Xiao  J D Xie  Y B Nawaz  F Jin  S Duan  F Li  M J Cao  H B. Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination.  Applied Catalysis B: Environmental2016181: 420–428

[6]

Luck  F. Wet air oxidation: Past, present and future.  Catalysis Today199953(1): 81–91

[7]

Kim  K H Ihm  S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review.  Journal of Hazardous Materials2011186(1): 16–34

[8]

Mezohegyi  GErjavec   BKaplan  R Pintar  A. Removal of bisphenol A and its oxidation products from aqueous solutions by sequential catalytic wet air oxidation and biodegradation.  Industrial & Engineering Chemistry Research201352(26): 9301–9307

[9]

Wang  J B Zhu  W P Yang  S X Wang  W Zhou  Y R. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts.  Applied Catalysis B: Environmental200878(1–2): 30–37

[10]

Yang  S X Besson  M Descorme  C. Catalytic wet air oxidation of succinic acid over Ru and Pt catalysts supported on CexZr1−xO2 mixed oxides.  Applied Catalysis B: Environmental2015165(165): 1–9

[11]

De los Monteros  A E Lafaye  G Cervantes  A Del Angel  G Barbier  JJr. Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides.  Catalysis Today2015258: 564–569

[12]

Szabados  ESagi   GSomodi  F Maroti  B Sranko  D Tungler  A. Wet air oxidation of paracetamol over precious metal/Ti mesh monolith catalyst.  Journal of Industrial and Engineering Chemistry201746: 364–372

[13]

Xu  ASun   C. Catalytic behaviour and copper leaching of Cu0.10Zn0.90Al1.90Fe0.10O4 spinel for catalytic wet air oxidation of phenol.  Environmental Technology201233(10–12): 1339–1344

[14]

Ersöz  G Atalay  S. Treatment of aniline by catalytic wet air oxidation: Comparative study over CuO/CeO2 and NiO/Al2O3 Journal of Environmental Management2012113(4): 244–250

[15]

Ma  C JWen   Y YYue   Q QLi   A QFu   J LZhang   NGai  H Zheng  J Chen  B H. Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx-CeO2 RSC Advances20177(43): 27079–27088

[16]

Rocha  R P Silva A M T Romero S M M Pereira M F R Figueiredo J L. The role of O- and S-containing surface groups on carbon nanotubes for the elimination of organic pollutants by catalytic wet air oxidation.  Applied Catalysis B: Environmental2014147(14): 314–321

[17]

Yang  SCui   YSun  Y Yang  H. Graphene oxide as an effective catalyst for wet air oxidation of phenol.  Journal of Hazardous Materials2014280: 55–62

[18]

Ma  HZhuo   QWang  B. Characteristics of CuO-MoO3-P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions.  Environmental Science & Technology200741(21): 7491–7496

[19]

Yang  S X Besson  M Descorme  C. Catalytic wet air oxidation of formic acid over Pt/CexZr1−xO2 catalysts at low temperature and atmospheric pressure.  Applied Catalysis B: Environmental2010100(1–2): 282–288

[20]

Xu  YLi   XCheng  X Sun  D Wang  X. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.  Environmental Science & Technology201246(5): 2856–2863

[21]

Zou  LWang   QWang  Z Jin  L Liu  R J Shen  X Q. Rapid decolorization of methyl blue in aqueous solution by recyclable microchannel-like La0.8K0.2FeOhollow microfibers.  Industrial & Engineering Chemistry Research201353(2): 658–663

[22]

Quintanilla  A Casas  J A Rodríguez  J J. Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts.  Applied Catalysis B: Environmental200776(1–2): 135–145

[23]

di Luca  C Ivorra  F Massa  P Fenoglio  R. Iron-alumina synergy in the heterogeneous Fenton-type peroxidation of phenol solutions.  Chemical Engineering Journal2015268: 280–289

[24]

Zhu  WBin   YLi  Z Jiang  Z Yin  T. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater.  Water Research200236(8): 1947–1954

[25]

Wang  X M Waite  T D. Role of gelling soluble and colloidal microbial products in membrane fouling.  Environmental Science & Technology200943(24): 9341–9347

[26]

Noh  J S Schwarz  J A. Effect of HNO3 treatment on the surface acidity of activated carbons.  Carbon199028(5): 675–682

[27]

Karpel  NLeitner   VFu  H X. pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts. Topics in Catalysis200533(1–4): 249–256

[28]

Descostes  MMercier   FThromat  N Beaucaire  C Gautier-Soyer  M. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium.  Applied Surface Science2000165(4): 288–302

[29]

Guo  L Q Chen  F Fan  X Q Cai  W D Zhang  J L. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst toward the degradation of acid orange 7 and phenol.  Applied Catalysis B: Environmental201096(1–2): 162–168

[30]

Barbier  JJr, Delanoë   FJabouille  F Duprez  D Blanchard  G Isnard  P. Total oxidation of acetic acid in aqueous solutions over noble metal catalysts.  Journal of Catalysis1998177(2): 378–385

[31]

Rosenfeldt  E J Linden  K G Canonica  S von Gunten  U. Comparison of the efficiency of ·OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2 Water Research200640(20): 3695–3704

[32]

Yang  YJiang   JLu  X Ma  J Liu  Y. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process.  Environmental Science & Technology201549(12): 7330–7339

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (302KB)

Supplementary files

FSE-17122-OF-GP_suppl_1

2012

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/