Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon

Tianyi Chen, Wancong Gu, Gen Li, Qiuying Wang, Peng Liang, Xiaoyuan Zhang, Xia Huang

PDF(901 KB)
PDF(901 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 6. DOI: 10.1007/s11783-018-1022-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon

Author information +
History +

Highlights

SPAC significantly enhanced the efficacyof catalytic ozonation.

Large external surface reduced the diffusionresistance.

Surface reaction was dominant for SPAC-basedcatalytic ozonation.

Simple ball milling brought favorablematerial characteristics for catalysis.

Abstract

In this study, super-fine powdered activated carbon (SPAC) hasbeen proposed and investigated as a novel catalyst for the catalyticozonation of oxalate for the first time. SPAC was prepared from commercialgranular activated carbon (GAC) by ball milling. SPAC exhibited highexternal surface area with a far greater member of meso- and macropores(563% increase in volume). The catalytic performances of activatedcarbons (ACs) of 8 sizes were compared and the rate constant for pseudofirst-order total organic carbon removal increased from 0.012 min-1 to 0.568 min-1 (47-fold increase) withthe decrease in size of AC from 20 to 40 mesh (863 mm) to SPAC (~1.0 mm). Furthermore, the diffusion resistance of SPAC decreased17-fold compared with GAC. The ratio of oxalate degradation by surfacereaction increased by 57%. The rate of transformationof ozone to radicals by SPAC was 330 times that of GAC. The resultssuggest that a series of changes stimulated by ball milling, includinga larger ratio of external surface area, less diffusion resistance,significant surface reaction and potential oxidized surface all contributedto enhancing catalytic ozonation performance. This study demonstratedthat SPAC is a simple and effective catalyst for enhancing catalyticozonation efficacy.

Graphical abstract

Keywords

Super-fine activated carbon / Catalytic ozonation / External surface area / Surface reaction / Hydroxyl radical

Cite this article

Download citation ▾
Tianyi Chen, Wancong Gu, Gen Li, Qiuying Wang, Peng Liang, Xiaoyuan Zhang, Xia Huang. Significant enhancement in catalytic ozonationefficacy: From granular to super-fine powdered activated carbon. Front. Environ. Sci. Eng., 2018, 12(1): 6 https://doi.org/10.1007/s11783-018-1022-2

References

[1]
Khamparia S, Jaspal  D K. Adsorption in combination with ozonation for the treatment of textile waste water:A critical review. Frontiers of EnvironmentalScience & Engineering, 2017, 11(1): 8 doi:10.1007/s11783-017-0899-5
[2]
Oller I, Malato  S, Sánchez-Pérez  J A. Combination of advanced oxidation processes and biological treatments for wastewaterdecontamination—A review. Scienceof the Total Environment, 2011, 409(20): 4141–4166
CrossRef Pubmed Google scholar
[3]
Matilainen A, Sillanpää  M. Removal of natural organic matter from drinking water by advancedoxidation processes. Chemosphere, 2010, 80(4): 351–365
CrossRef Pubmed Google scholar
[4]
Bard A J, Faulkner  L R. Electrochemical Methods: Fundamentals and applications. 2nd ed.New York: John Wiley and Sons Inc., 2001
[5]
Faria P C C,  Órfão J J M,  Pereira M F R. Activated carbon catalyticozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental, 2008, 79(3): 237–243
CrossRef Google scholar
[6]
Staehelin J, Hoigne  J. Decomposition of ozone in water in the presence of organic solutes acting as promotersand inhibitors of radical chain reactions. Environmental Science & Technology, 1985, 19(12): 1206–1213
CrossRef Pubmed Google scholar
[7]
Alvárez P, García-Araya  J, Beltrán F,  Giráldez I,  Jaramillo J,  Gµmez-Serrano V. The influence of various factors on aqueous ozone decomposition by granular activatedcarbons and the development of a mechanistic approach. Carbon, 2006, 44(14): 3102–3112
CrossRef Google scholar
[8]
Legube B, Leitner  N K V. Catalytic ozonation: A promising advanced oxidation technology forwater treatment. Catalysis Today, 1999, 53(1): 61–72
CrossRef Google scholar
[9]
Ma J, Graham  N J D. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances. Water Research, 1999, 33(3): 785–793
CrossRef Google scholar
[10]
Pines D S, Reckhow  D A. Effect of dissolved cobalt(II) on the ozonation of oxalic acid. Environmental Science & Technology, 2002, 36(19): 4046–4051
CrossRef Pubmed Google scholar
[11]
Beltrán F J,  Rivas F J,  Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water. Water Research, 2005, 39(15): 3553–3564
CrossRef Pubmed Google scholar
[12]
Andreozzi R, Caprio  V, Insola A,  Marotta R,  Tufano V. The ozonation of pyruvicacid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Research, 1998, 32(5): 1492–1496
CrossRef Google scholar
[13]
Nawrocki J, Kasprzyk-Hordern  B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 2010, 99(1–2): 27–42
CrossRef Google scholar
[14]
Fan X, Restivo  J, Órfão J J M, Pereira M F R,  Lapkin A A. The role of multiwalled carbon nanotubes (MWCNTs) inthe catalytic ozonation of atrazine. Chemical Engineering Journal, 2014, 241: 66–76
CrossRef Google scholar
[15]
Oulton R, Haase  J P, Kaalberg  S, Redmond C T,  Nalbandian M J,  Cwiertny D M. Hydroxyl radical formation during ozonation of multiwalledcarbon nanotubes: performance optimization and demonstration of areactive CNT filter. Environmental Science& Technology, 2015, 49(6): 3687–3697
CrossRef Pubmed Google scholar
[16]
Rocha R P, Gonçalves  A G, Pastrana-Martínez  L M, Bordoni  B C, Soares  O S G P, Órfão  J J M, Faria  J L, Figueiredo  J L, Silva  A M T, Pereira  M F R. Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 2015, 249: 192–198
CrossRef Google scholar
[17]
Restivo J, Garcia-Bordejé  E, Órfão J J M, Pereira M F R. Carbon nanofibers doped withnitrogen for the continuous catalytic ozonation of organic pollutants. Chemical Engineering Journal, 2016, 293: 102–111
CrossRef Google scholar
[18]
Zhang T, Li  C, Ma J,  Tian H, Qiang  Z. Surface hydroxyl groups of synthetic a-FeOOH in promoting ·OH generationfrom aqueous ozone: Property and activity relationship. Applied Catalysis B: Environmental, 2008, 82(1–2): 131–137
CrossRef Google scholar
[19]
Zhang T, Li  W, Croué J P. Catalytic ozonation of oxalatewith a cerium supported palladium oxide: An efficient degradationnot relying on hydroxyl radical oxidation. Environmental Science & Technology, 2011, 45(21): 9339–9346
CrossRef Pubmed Google scholar
[20]
Marsh H. Introduction to Carbon Technologies. Alicante: University of Alicante, 1997
[21]
Figueiredo J L,  Pereira M F R. The role of surface chemistry in catalysis with carbons. Catalysis Today, 2010, 150(1–2): 2–7
CrossRef Google scholar
[22]
Figueiredo J L,  Pereira M F R,  Freitas M M A,  Orfao J J M. Modification of the surface chemistry of activated carbons. Carbon, 1999, 37(9): 1379–1389
CrossRef Google scholar
[23]
Krzyżyńska B,  Malaika A,  Rechnia P,  Kozłowski M. Study on catalytic centresof activated carbons modified in oxidising or reducing conditions. Journal of Molecular Catalysis A Chemical, 2014, 395: 523–533
CrossRef Google scholar
[24]
Sánchez-Polo M,  von Gunten U,  Rivera-Utrilla J. Efficiency of activated carbonto transform ozone into *OH radicals: influence of operational parameters. Water Research, 2005, 39(14): 3189–3198
CrossRef Pubmed Google scholar
[25]
Xing L, Xie  Y, Cao H,  Minakata D,  Zhang Y,  Crittenden J C. Activated carbon-enhanced ozonation of oxalate attributedto HO• oxidation in bulk solution and surface oxidation: Effectsof the type and number of basic sites. Chemical Engineering Journal, 2014, 245: 71–79
CrossRef Google scholar
[26]
Cao H, Xing  L, Wu G,  Xie Y, Shi  S, Zhang Y,  Minakata D,  Crittenden J C. Promoting effect of nitration modification on activatedcarbon in the catalytic ozonation of oxalic acid. Applied Catalysis B: Environmental, 2014, 146: 169–176
CrossRef Google scholar
[27]
Jans U, Hoigne  J. Activated carbon and carbon black catalyzed transformation of aqueous ozoneinto OH-radicals. Ozone Science and Engineering, 1998, 20(1): 67–90
CrossRef Google scholar
[28]
Álvarez P M,  Masa F J,  Jaramillo J,  Beltran F J,  Gomezserrano V. Kinetics of ozone decomposition by granular activated carbon. Industrial & Engineering Chemistry Research, 2008, 47(8): 2545–2553
CrossRef Google scholar
[29]
Qiao N, Zhang  X, He C,  Li Y, Zhang  Z, Cheng J,  Hao Z. Enhanced performances incatalytic oxidation of o-xylene over hierarchical macro-/mesoporoussilica-supported palladium catalysts.  Frontiers of Environmental Science & Engineering, 2016, 10(3): 458–466 doi:10.1007/s11783-015-0802-1
[30]
Bonvin F, Jost  L, Randin L,  Bonvin E,  Kohn T. Super-fine powdered activatedcarbon (SPAC) for efficient removal of micropollutants from wastewatertreatment plant effluent. Water Research, 2016, 90: 90–99
CrossRef Pubmed Google scholar
[31]
Partlan E, Davis  K, Ren Y,  Apul O G,  Mefford O T,  Karanfil T,  Ladner D A. Effect of bead milling on chemical and physical characteristics of activatedcarbons pulverized to superfine sizes. Water Research, 2016, 89: 161–170
CrossRef Pubmed Google scholar
[32]
Matsui Y, Ando  N, Yoshida T,  Kurotobi R,  Matsushita T,  Ohno K. Modeling high adsorption capacity and kinetics of organicmacromolecules on super-powdered activated carbon. Water Research, 2011, 45(4): 1720–1728
CrossRef Pubmed Google scholar
[33]
Ando N, Matsui  Y, Kurotobi R,  Nakano Y,  Matsushita T,  Ohno K. Comparison of natural organic matter adsorption capacitiesof super-powdered activated carbon and powdered activated carbon. Water Research, 2010, 44(14): 4127–4136
CrossRef Pubmed Google scholar
[34]
Elovitz M S, von Gunten  U. Hydroxyl radical/ozone ratios during ozonation processes. I. TheRCT concept. Ozone Science and Engineering, 1999, 21(3): 239–260 doi:10.1080/01919519908547239
[35]
Rivera-Utrilla J, Sánchez-Polo  M. Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activatedcarbon in aqueous phase. Applied Catalysis B: Environmental, 2002, 39(4): 319–329
CrossRef Google scholar
[36]
Nawrocki J, Fijołek  L. Catalytic ozonation—Effect of carbon contaminants on the processof ozone decomposition. Applied CatalysisB: Environmental, 2013, 142–143: 307–314
CrossRef Google scholar
[37]
Boehm H P. Chemical Identification of Surface Groups. Advances in Catalysis, 1966, 16: 179–274
[38]
Dastgheib S A,  Karanfil T,  Cheng W. Tailoring activated carbonsfor enhanced removal of natural organic matter from natural waters. Carbon, 2004, 42(3): 547–557
CrossRef Google scholar
[39]
Valdés H, Sánchez-Polo  M, Rivera-Utrilla J,  Zaror C A. Effect of ozone treatment on surface properties of activatedcarbon. Langmuir, 2002, 18(6): 2111–2116
CrossRef Google scholar
[40]
Vecitis C D, Lesko  T, Colussi A J,  Hoffmann M R. Sonolytic decomposition of aqueous bioxalate in the presence of ozone. The Journal of Physical Chemistry A, 2010, 114(14): 4968–4980
CrossRef Pubmed Google scholar
[41]
Hoigné J, Bader  H. Rate constants of reactions of ozone with organic and inorganic compounds in water—II:Dissociating organic compounds. Water Research, 1983, 17(2): 185–194
CrossRef Google scholar
[42]
Sehested K, Getoff  N, Schwoerer F,  Markovic V M,  Nielsen S O. Pulse radiolysis of oxalicacid and oxalates. Journal of PhysicalChemistry, 1971, 75(6): 749–755
CrossRef Google scholar
[43]
Bader H, Hoigne  J. Determination of ozone in water by the indigo method. Water Research, 1981, 15(4): 449–456
CrossRef Google scholar
[44]
American Water WorksAssociation (AWWA) A P H A A. Standard Methods for the Examination of Water and Wastewater. 22nd Ed.Washington, DC: Water Environment Federation, 2012
[45]
Zhao D, Cheng  J, Vecitis C D,  Hoffmann M R. Sorption of perfluorochemicals to granular activated carbon in thepresence of ultrasound. The Journal ofPhysical Chemistry A, 2011, 115(11): 2250–2257
CrossRef Pubmed Google scholar
[46]
Wang H, Yuan  S, Zhan J,  Wang Y, Yu  G, Deng S,  Huang J,  Wang B. Mechanisms of enhanced total organiccarbon elimination from oxalic acid solutions by electro-peroxoneprocess. Water Research, 2015, 80: 20–29
CrossRef Pubmed Google scholar
[47]
Xing L, Xie  Y, Minakata D,  Cao H, Xiao  J, Zhang Y,  Crittenden J C. Activated carbon enhanced ozonation of oxalate attributed to HO oxidationin bulk solution and surface oxidation: Effect of activated carbondosage and pH. Journal of EnvironmentalSciences (China), 2014, 26(10): 2095–2105
CrossRef Pubmed Google scholar
[48]
Fogler H S. Elements of Chemical Reaction Engineering, 3rd Ed. Upper Saddle River, NJ: Prentice Hall PTR, 1999
[49]
Beltrán F J,  Rivas J,  Álvarez P,  Montero-de-Espinosa  R M. Kinetics of heterogeneouscatalytic ozone decomposition in water in an activated carbon. Ozone Science and Engineering, 2002, 24(4): 227–237
CrossRef Google scholar
[50]
Wang J, Cheng  J, Wang C,  Yang S, Zhu  W. Catalytic ozonation of dimethyl phthalate with RuO2/Al2O3 catalysts prepared by microwave irradiation. Catalysis Communications, 2013, 41: 1–5
CrossRef Google scholar
[51]
Breitbach M, Bathen  D. Influence of ultrasound on adsorption processes. Ultrasonics Sonochemistry, 2001, 8(3): 277–283
CrossRef Pubmed Google scholar
[52]
Liu C, Sun  Y, Wang D,  Sun Z, Chen  M, Zhou Z,  Chen W. Performance and mechanism of low-frequency ultrasound to regenerate the biologicalactivated carbon. Ultrasonics Sonochemistry, 2017, 34: 142–153
CrossRef Pubmed Google scholar
[53]
Park J S, Choi  H, Cho J. Kinetic decomposition of ozone and para-chlorobenzoicacid (pCBA) during catalytic ozonation. Water Research, 2004, 38(9): 2285–2292
CrossRef Pubmed Google scholar
[54]
von Gunten U. Ozonation of drinking water: Part I. Oxidation kineticsand product formation. Water Research, 2003, 37(7): 1443–1467
CrossRef Pubmed Google scholar
[55]
Alvárez P M,  García-Araya J F,  Beltrán F J,  Giráldez I,  Jaramillo J,  Gµmez-Serrano V. The influence of various factors on aqueous ozone decomposition bygranular activated carbons and the development of a mechanistic approach. Carbon, 2006, 44(14): 3102–3112
CrossRef Google scholar
[56]
Faria P C C,  Órfão J J M,  Pereira M F R. Ozone decomposition in watercatalyzed by activated carbon: Influence of chemical and texturalproperties. Industrial & EngineeringChemistry Research, 2006, 45(8): 2715–2721
CrossRef Google scholar
[57]
Chen C, Huang  W. Aggregation kinetics of nanosized activated carbons in aquatic environments. Chemical Engineering Journal, 2017, 313: 882–889
CrossRef Google scholar

Acknowledgements

This research was supported by theNational Key Research and Development Program-China (No. 2016YFB0600502)and funding from the State Key Joint Laboratory of Environment Simulationand Pollution Control (No. 15Y02ESPCT).

Electronic Supplementary Material

Supplementary material is availablein the online version of this article at http://dx.doi.org/10.1007/s11783-018-1022-2and is accessible for authorized users.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbHGermany
AI Summary AI Mindmap
PDF(901 KB)

Accesses

Citations

Detail

Sections
Recommended

/