Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system

Feng Wang , Weiying Li , Yue Li , Junpeng Zhang , Jiping Chen , Wei Zhang , Xuan Wu

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 6

PDF (1194KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 6 DOI: 10.1007/s11783-018-1020-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system

Author information +
History +
PDF (1194KB)

Abstract

The increase of water ages drove the deterioration of drinking water quality.

The relative abundance of Rhizobiales uniquely increase during distributing process.

Rhizobiales order was helpful for inhibiting corrosion under high chlorine level.

New disinfecting strategies should be developed to ensure drinking water safety.

Bacterial community in the drinking water distribution system (DWDS) was regulated by multiple environmental factors, many of which varied as a function of water age. In this study, four water samples with different water ages, including finished water (FW, 0 d) and tap water (TW) [TW1 (1 d), TW2(2 d) and TW3(3 d)], were collected along with the mains of a practical DWDS, and the bacterial community was investigated by high-throughput sequencing technique. Results indicated that the residual chlorine declined with the increase of water age, accompanied by the increase of dissolved organic matter, total bacteria counts and bacterial diversity (Shannon). For bacterial community composition, although Proteobacteria phylum (84.12%-97.6%) and Alphaproteobacteria class (67.42%-93.09%) kept dominate, an evident regular was observed at the order level. In detail, the relative abundance of most of other residual orders increased with different degrees from the start to the end of the DWDS, while a downward trend was uniquely observed in terms of Rhizobiales, who was inferred to be chlorine-resistant and be helpful for inhibiting pipes corrosion. Moreover, some OTUs were found to be closely related with species possessing pathogenicity and chlorine-resistant ability, so it was recommended that the use of agents other than chlorine or agents that can act synergically with chlorine should be developed for drinking water disinfection. This paper revealed bacterial community variations along the mains of the DWDS and the result was helpful for understanding bacterial ecology in the DWDS.

Graphical abstract

Keywords

Bacterial community / Water age / High-throughput sequencing technique / Drinking water distribution system

Cite this article

Download citation ▾
Feng Wang, Weiying Li, Yue Li, Junpeng Zhang, Jiping Chen, Wei Zhang, Xuan Wu. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system. Front. Environ. Sci. Eng., 2018, 12(3): 6 DOI:10.1007/s11783-018-1020-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu WLi  XBond T Gao NYin  D. The formation of haloacetamides and other disinfection by-products from non-nitrogenous low-molecular weight organic acids during chloramination. Chemical Engineering Journal2016285: 164–171

[2]

El-Chakhtoura JPrest  ESaikaly P van Loosdrecht M Hammes F Vrouwenvelder H. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network. Water Research201574: 180–190

[3]

Douterelo ISharpe  R LBoxall  J B. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Research201347(2): 503–516

[4]

Chu CLu  C. Effects of oxalic acid on the regrowth of heterotrophic bacteria in the distributed drinking water. Chemosphere200457(7): 531–539

[5]

Ndiongue SHuck  P MSlawson  R M. Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Water Research200539(6): 953–964

[6]

Andra S SMakris  K CBotsaris  GCharisiadis P Kalyvas H Costa C N. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems. Science of the Total Environment2014472: 1145–1151

[7]

Lu JStruewing  IVereen E Kirby A E Levy KMoe  CAshbolt N. Molecular Detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system. Journal of Applied Microbiology2016120(2): 509–521

[8]

Thomas J MAshbolt  N J. Do free-living amoebae in treated drinking water systems present an emerging health risk? Environmental Science & Technology201145(3): 860–869

[9]

Falkinham J O 3rd. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. Journal of Applied Microbiology2009107(2): 356–367

[10]

Wang HEdwards  MFalkinham J O 3rd,  Pruden A. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Applied and Environmental Microbiology201278(17): 6285–6294

[11]

von Baum HWelte  TMarre R Suttorp N Ewig S. Community-acquired pneumonia through Enterobacteriaceae and Pseudomonas aeruginosa: Diagnosis, incidence and predictors. European Respiratory Journal201035(3): 598–605

[12]

Henne KKahlisch  LHöfle M G Brettar I. Seasonal dynamics of bacterial community structure and composition in cold and hot drinking water derived from surface water reservoirs. Water Research201347(15): 5614–5630

[13]

Mi ZDai  YXie S Chen CZhang  X. Impact of disinfection on drinking water biofilm bacterial community. Journal of Environmental Sciences (China)201537: 200–205

[14]

Jang H JChoi  Y JKa  J O. Effects of diverse water pipe materials on bacterial communities and water quality in the annular reactor. Journal of Microbiology and Biotechnology201121(2): 115–123

[15]

Manuel C MNunes  O CMelo  L F. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Research200741(3): 551–562

[16]

Li MLiu  ZChen Y Hai Y. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials. Water Research2016106: 593–603

[17]

Chao YMa  LYang Y Ju FZhang  X XWu  W MZhang  T. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment. Scientific Reports20133(1): 3550

[18]

Prest E IHammes  FKötzsch S van Loosdrecht M C Vrouwenvelder J S. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Research201347(19): 7131–7142

[19]

Amato K RYeoman  C JKent  ARighini N Carbonero F Estrada A Gaskins H R Stumpf R M Yildirim S Torralba M Gillis M Wilson B A Nelson K E White B A Leigh S R. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME Journal20137(7): 1344–1353

[20]

Delafont VBouchon  DHéchard Y Moulin L. Environmental factors shaping cultured free-living amoebae and their associated bacterial community within drinking water network. Water Research2016100: 382–392

[21]

Mathieu LBouteleux  CFass S Angel E Block J C. Reversible shift in the a-, b- and g-proteobacteria populations of drinking water biofilms during discontinuous chlorination. Water Research200943(14): 3375–3386

[22]

Jeong C HPostigo  CRichardson S D Simmons J E Kimura S Y Mariñas B J Barcelo D Liang P Wagner E D Plewa M J. Occurrence and comparative toxicity of Haloacetaldehyde disinfection byproducts in drinking water. Environmental Science & Technology201549(23): 13749–13759

[23]

Petterson S R Stenström T A. Quantification of pathogen inactivation efficacy by free chlorine disinfection of drinking water for QMRA. Journal of Water and Health201513(3): 625–644

[24]

Dietrich J PLoge  F JGinn  T RBaşağaoğlu  H. Inactivation of particle-associated microorganisms in wastewater disinfection: Modeling of ozone and chlorine reactive diffusive transport in polydispersed suspensions. Water Research200741(10): 2189–2201

[25]

Lynch FTomlinson  SPalombo E A Harding I H. An epifluorescence-based evaluation of the effects of short-term particle association on the chlorination of surface water bacteria. Water Research201463: 199–208

[26]

Wang HHu  CZhang L Li XZhang  YYang M. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems. Water Research201465: 362–370

[27]

Zarasvand K A Rai V R. Microorganisms: Induction and inhibition of corrosion in metals. International Biodeterioration & Biodegradation201487: 66–74

[28]

Kankaala PPeura  SNykänen H Sonninen E Taipale S Tiirola M Jones R I. Impacts of added dissolved organic carbon on boreal freshwater pelagic metabolism and food webs in mesocosm experiments. Fundamental and Applied Limnology2010177(3): 161–176

[29]

Lin WYu  ZChen X Liu RZhang  H. Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system. Applied Microbiology and Biotechnology201397(18): 8393–8401

[30]

Gomez-Alvarez VRevetta  R PSanto Domingo  J W. Metagenomic analyses of drinking water receiving different disinfection treatments. Applied and Environmental Microbiology201278(17): 6095–6102

[31]

World Health Organization. Guidelines for Drinking-Water Quality. 4th ed. Geneva: World Health Organization2011xxiii, 541 p

[32]

Ryan M PAdley  C C. Sphingomonas paucimobilis: A persistent Gram-negative nosocomial infectious organism. Journal of Hospital Infection201075(3): 153–157

[33]

Lee E SYoon  T HLee  M YHan  S HKa  J O. Inactivation of environmental mycobacteria by free chlorine and UV. Water Research201044(5): 1329–1334

[34]

Zhang MLiu  WNie X Li CGu  JZhang C. Molecular analysis of bacterial communities in biofilms of a drinking water clearwell. Microbes and Environments201227(4): 443–448

[35]

Sun W. Study on the Biological Safety of Drinking Water Following UV Disinfection. Dissertation for the Doctoral Degree. Beijing: Tsinghua University2010

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1194KB)

Supplementary files

FSE-17117-OF-WF_suppl_1

3533

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/