End-of-life batteries management and material flow analysis in South Korea

Hyunhee Kim , Yong-Chul Jang , Yeonjung Hwang , Youngjae Ko , Hyunmyeong Yun

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 3

PDF (660KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 3 DOI: 10.1007/s11783-018-1019-x
RESEARCH ARTICLE
RESEARCH ARTICLE

End-of-life batteries management and material flow analysis in South Korea

Author information +
History +
PDF (660KB)

Abstract

Analysis of collection and recycling system of end-of-life batteries was examined.

Relatively limited fractions of portable batteries were collected by EPR system.

More effective and diverse collection pathways should be developed.

Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-of-life (EOL) or waste batteries are generated. Such batteries may contain a variety of materials that includes valuable resources as well as toxic elements. Thus, the proper recycling and management of batteries is very important from the perspective of resource conservation and environmental effect. The collection and recycling of EOL batteries is relatively low in South Korea compared to other countries, although an extended producer responsibility (EPR) policy was adopted for battery recycling in 2003. In this study, the management and material flow of EOL batteries is presented to determine potential problems and quantitative flow, based on literature review, site visits to battery recycling facilities, and interviews with experts in the Korea Battery Recycling Association (KBRA), manufacturers, and regulators in government. The results show that approximately 558 tons of manganese-alkaline batteries, the largest fraction among recycling target items, was disposed in landfills or incinerators in 2015, while approximately 2,000 tons of batteries were recovered at a recycling facility by simple sorting and crushing processes. By raising environmental awareness, more diverse and effective collection systems could be established for consumers to easily dispose of EOL batteries in many places. Producers, retailers and distributors in South Korea should also play an important role in the collection of EOL batteries from consumers. Lithium-ion batteries from many electronic devices must be included in the EPR system for resource recovery.

Graphical abstract

Keywords

End-of-life battery / Recycling / Material flow analysis (MFA) / Extended producer responsibility (EPR) / Resource recovery

Cite this article

Download citation ▾
Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun. End-of-life batteries management and material flow analysis in South Korea. Front. Environ. Sci. Eng., 2018, 12(3): 3 DOI:10.1007/s11783-018-1019-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vassura IMorselli  LBernardi E Passarini F. Chemical characterisation of spent rechargeable batteries. Waste Management (New York, N.Y.)200929(8): 2332–2335

[2]

Wang RLin  CWu S. A novel recovery process of metal values from cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy200999(3–4): 194–201

[3]

Liu XWu  ZStoliarov I S Denlinger M Masias A Snyder K. Heat release during thermally-induced failure of a lithium ion battery: Impact of cathode composition. Fire Safety Journal201685: 10–22

[4]

European Commission-DG Environment. Comparative life-cycle assessment of nickel-cadmium (NiCd) batteries used in cordless power tools (CPTs) vs. their alternative nickel-metal hydride (NiMH) and lithium-ion (Li-ion) batteries20117, 0307/2012/63269/ETU/C2

[5]

European Parliament Council of the European Union. Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on batteries and accumulators and waste batteries and accumulators, and repealing Directive 9/157/EEC. 2006. Available online at 160;(accessed May 26, 2017)

[6]

European Commission-DG Environment. Development of Guidance on Extended Producer Responsibility.20140307(20) doi:10/573669/ETU/C2

[7]

European Portable Battery Association (EPBA). Collection of waste portable batteries in Europe in view of the achievability of the collection targets set by Battery Directive 2006/66EC, 2014

[8]

Asari MSakai  S. Li-ion battery recycling and cobalt flow analysis in Japan. Resources, Conservation and Recycling201381: 52–59

[9]

Terazono AOguchi  MIino S Mogi S. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety. Waste Management (New York, N.Y.)201539: 246–257

[10]

China Ministry of Environmental Protection. Law on Prevention of Environmental Pollution Caused by Solid Wastes. 2003, Available online at 160;(accessed September 26, 2017)

[11]

Bigum MDamgaard  AScheutz C Christensen T H. Environmental impacts and resource losses of incinerating misplaced household special wastes (WEEE, batteries, ink cartridges and cables). Resources, Conservation and Recycling2017122: 251–260

[12]

Rogulski ZCzerwinski  A. Used batteries collection and recycling in Poland. Journal of Power Sources2006159(1): 454–458

[13]

Chang T CYou  S JYu  B SYao  K F. A material flow of lithium batteries in Taiwan. Journal of Hazardous Materials2009163(2-3): 910–915

[14]

Lin SChiu  K. An evaluation of recycling schemes for waste dry batteries—A simulation approach. Journal of Cleaner Production201593: 330–338

[15]

Müller TFriedrich  B. Development of a recycling process for nickel-metal hydride batteries. Journal of Power Sources2006158(2): 1498–1509

[16]

Xu JThomas  HFrancis R Lum KWang  JLiang B. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources2008177(2): 512–527

[17]

Mishra DKim  D JRalph  D EAhn  J GRhee  Y H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management (New York, N.Y.)200828(2): 333–338

[18]

Yang XZhang  JFang X. Rare earth element recycling from waste nickel-metal hydride batteries. Journal of Hazardous Materials2014279: 384–388

[19]

Ordoñez JGago  EGirard A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable & Sustainable Energy Reviews201660: 195–205

[20]

Wang M MZhang  C CZhang  F S. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Management (New York, N.Y.)201651: 239–244

[21]

Barik S PPrabaharan  GKumar B. An innovative approach to recover the metal values from spent lithium-ion batteries. Waste Management (New York, N.Y.)201651: 222–226

[22]

Prabaharan GBarik  S PKumar  NKumar L. Electrochemical process for electrode material of spent lithium ion batteries. Waste Management (New York, N.Y.)201768: 527–533

[23]

Zeng XLi  J. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. Journal of Hazardous Materials2014271: 50–56

[24]

Zeng XLi  JShen B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of Hazardous Materials2015295: 112–118

[25]

Mason-Jones Kvon Blottnitz  H. Flows and fates of nickel-cadmium batteries in the City of Cape Town. Minerals Engineering201023(3): 211–218

[26]

Ziemann SWeil  MSchebek L. Tracing the fate of lithium – The development of a material flow model. Resources, Conservation and Recycling201263: 26–34

[27]

Sun XHao  HZhao F Liu Z. Tracing global lithium flow: A trade-linked material flow analysis. Resources, Conservation and Recycling2017124: 50–61

[28]

Hao HLiu  ZZhao F Geng YSarkis  J. Material flow analysis of lithium in China. Resources Policy201751: 100–106

[29]

Lu BLiu  JYang J. Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014. Resources, Conservation and Recycling2017119: 109–116

[30]

Sakai SYano  JHirai Y Asari M Yanagawa R Matsuda T Yoshida H Yamada T Kajiwara N Suzuki G Kunisue T Takahashi S Tomoda K Wuttke J Mählitz P Rotter S V Grosso M Astrup F T Cleary J Oh GLiu  LLi J Ma HChi  K NMoore  S. Waste prevention for sustainable resource and waste management. Journal of Material Cycles and Waste Management201719(4): 1–19

[31]

Bureau of Statistics. Available online at 160;(accessed May 15, 2017)

[32]

Korea Ministry of Environment (Korea MOE). Available online at 160;(accessed May 15, 2017)

[33]

Korea Battery Recycling Association (KBRA). Available online at 160;(accessed May 15, 2017)

[34]

Extended Producer Responsibility system (in Korean), Available online at 160;(accessed September 29, 2017)

[35]

Brunner H PRechberger  H. Practical handbook of material flow analysis. Boca Raton, Florida: Lewis, 2004

[36]

Bonnin MAzzaro-Pantel  CPibouleau L Domenech S Villeneuve J. Development and validation of a dynamic material flow analysis model for French copper cycle. Chemical Engineering Research & Design201391(8): 1390–1402

[37]

Jang Y. Study on the actual situation of hazardous waste in the Daejeon metropolitan city and its effective management plan. Daejeon Green Environment Center, 2012 (in Korean)

[38]

Korea Environment Corporation (KECO). Available online at 160;(accessed April 26, 2017)

[39]

KOBAR Co. Ltd., Available online at 160;(accessed September 29, 2017)

[40]

Nomura Kohsan Co. Ltd., Available online at 160;(accessed September 29, 2017)

[41]

Japan Portable Rechargeable Battery Recycling Center (JBRC). Available online at 160;(accessed May 21, 2017)

[42]

Terazono AOguchi  MIino S Mogi S. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety. Waste Management (New York, N.Y.)201539: 246–257

[43]

Battery Association of Japan (BAJ). Available online at 160;(accessed May 26, 2017)

[44]

Germany Federal Ministry for the Environment. Nature Conservation, Building and Nuclear Safety (Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit). Available online at 160;(accessed May 26, 2017)

[45]

Gemeinsames Rücknahme System (GRS) Batterien. Available online at accessed May 29, 2017)

[46]

CCR REBAT Germany. Available online at 160;(accessed May 29, 2017)

[47]

European Recycling Platform (ERP) Deutschland GmbH. Available online at 160;(accessed September 26, 2017)

[48]

Peng PJiang  F. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study. International Journal of Heat and Mass Transfer2016103: 1008–1016

[49]

Liu XWu  ZStoliarov S I Denlinger M Masias A Snyder K. Heat release during thermally-induced failure of a lithium ion battery: Impact of cathode composition. Fire Safety Journal201685: 10–22

[50]

Barik S PPrabaharan  GKumar L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. Journal of Cleaner Production2017147: 37–43

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (660KB)

5089

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/