Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane

Taro Miyoshi , Thanh Phong Nguyen , Terumi Tsumuraya , Hiromu Tanaka , Toru Morita , Hiroki Itokawa , Toshikazu Hashimoto

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 1

PDF (958KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 1 DOI: 10.1007/s11783-018-1018-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane

Author information +
History +
PDF (958KB)

Abstract

The fiber length and packing density of the PTFE membrane element were increased.

The MBR was stably operated under an SADm of 0.13 m3·m-2·hr-1.

Specific energy consumption was estimated to be less than 0.4 kWh·m-3.

In this study, we modified a polytetrafluoroethylene (PTFE) hollow-fiber membrane element used for submerged membrane bioreactors (MBRs) to reduce the energy consumption during MBR processes. The high mechanical strength of the PTFE membrane made it possible to increase the effective length of the membrane fiber from 2 to 3 m. In addition, the packing density was increased by 20% by optimizing the membrane element configuration. These modifications improve the efficiency of membrane cleaning associated with aeration. The target of specific energy consumption was less than 0.4 kWh·m-3 in this study. The continuous operation of a pilot MBR treating real municipal wastewater revealed that the MBR utilizing the modified membrane element can be stably operated under a specific air demand per membrane surface area (SADm) of 0.13 m3·m-2·hr-1 when the daily-averaged membrane fluxes for the constant flow rate and flow rate fluctuating modes of operation were set to 0.6 and 0.5 m3·m-2·d-1, respectively. The specific energy consumption under these operating conditions was estimated to be less than 0.37 kWh·m-3. These results strongly suggest that operating an MBR equipped with the modified membrane element with a specific energy consumption of less than 0.4 kWh·m-3 is highly possible.

Graphical abstract

Keywords

Energy-saving / Membrane bioreactor / Polytetrafluoroethylene (PTFE) membrane / Hollow fiber / Power consumption

Cite this article

Download citation ▾
Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto. Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane. Front. Environ. Sci. Eng., 2018, 12(3): 1 DOI:10.1007/s11783-018-1018-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Judd S. The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment. Oxford: Elsevier2006

[2]

Fenu ARoels  JWambecq T De Gussem K Thoeye C De Gueldre G Van De Steene B. Energy audit of a full scale MBR system. Desalination2010262(1–3): 121–128

[3]

Krzeminski Pvan der Graaf  J H J Mvan Lier  J B. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology201265(2): 380–392

[4]

Barillon BMartin Ruel  SLanglais C Lazarova V. Energy efficiency in membrane bioreactors. Water Science and Technology201367(12): 2685–2691

[5]

Buer TCumin  J. MBR module design and operation. Desalination2010262(1–3): 1073–1077

[6]

Xiao KXu  YLiang S Lei TSun  JWen X Zhang H Chen CHuang  X. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect. Frontiers of Environmental Science & Engineering20148(6): 805–819

[7]

Krzeminski PLeverette  LMalamis S Katsou E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science2017527: 207–227

[8]

Tao GKekre  KOo M H Viswanath B Aliman M D Y Seah H. Energy reduction and optimisation in membrane bioreactors systems. Water Practice and Technology2010, 5(4): 88–93

[9]

Itokawa HTsuji  KYamashita K Hashimoto T. Design and operating experiences of full-scale municipal membrane bioreactors in Japan. Water Science and Technology201469(5): 1088–1093

[10]

Hoque AKimura  KMiyoshi T Yamato N Watanabe Y. Characteristics of foulants in air-sparged side-stream tubular membranes used in a municipal wastewater membrane bioreactor. Separation and Purification Technology201293: 83–91

[11]

Gil J ATúa  LRueda A Montaño B Rodríguez M Prats D. Monitoring and analysis of the energy cost of an MBR. Desalination2010250(3): 997–1001

[12]

Verrecht BMaere  TNopens I Brepols C Judd S. The cost of a large-scale hollow fibre MBR. Water Research201044(18): 5274–5283

[13]

Verrecht BJames  CGermain E Ma WJudd  S. Experimental evaluation of intermittent aeration of a hollow fibre membrane bioreactor. Water Science and Technology201163(6): 1217–1223

[14]

Ho JSmith  SRoh H K. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane. Water Science and Technology201470(12): 1998–2003

[15]

Kurita TKimura  KWatanabe Y. Energy saving in the operation of submerged MBRs by the insertion of baffles and the introduction of granular materials. Separation and Purification Technology2015141(12): 207–213

[16]

Monclús HDalmau  MGabarrón S Ferrero G Rodríguez-Roda I Comas J. Full-scale validation of an air scour control system for energy savings in membrane bioreactors. Water Research201579(1): 1–9

[17]

Yan XWu  QSun J Liang P Zhang X Xiao KHuang  X. Hydrodynamic optimization of membrane bioreactor by horizontal geometry modification using computational fluid dynamics. Bioresource Technology2016200: 328–334

[18]

Miyoshi TYamamura  HMorita T Watanabe Y. Effect of intensive membrane aeration and membrane flux on membrane fouling in submerged membrane bioreactors: Reducing specific air demand per permeate (SADp). Separation and Purification Technology2015148(25): 1–9

[19]

Judd S. The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chemical Engineering Journal2015305(1): 37–45

[20]

Japan Sewage Works Association. Standard Methods for the Examination of Wastewater. Japan Sewage Works Association, Tokyo, Japan (in Japanese)

[21]

Cornel PWagner  MKrause S. Investigation of oxygen transfer rates in full scale membrane bioreactors. Water Science and Technology200347(11): 313–319

[22]

Krampe JKrauth  K. Oxygen transfer into activated sludge with high MLSS concentrations. Water Science and Technology200347(11): 297–303

[23]

Germain ENelles  FDrews A Pearce P Kraume M Reid EJudd  S JStephenson  T. Biomass effects on oxygen transfer in membrane bioreactors. Water Research200741(5): 1038–1044

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (958KB)

3119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/