Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane

Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto

PDF(958 KB)
PDF(958 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 1. DOI: 10.1007/s11783-018-1018-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane

Author information +
History +

Highlights

The fiber length and packing density of the PTFE membrane element were increased.

The MBR was stably operated under an SADm of 0.13 m3·m-2·hr-1.

Specific energy consumption was estimated to be less than 0.4 kWh·m-3.

Abstract

In this study, we modified a polytetrafluoroethylene (PTFE) hollow-fiber membrane element used for submerged membrane bioreactors (MBRs) to reduce the energy consumption during MBR processes. The high mechanical strength of the PTFE membrane made it possible to increase the effective length of the membrane fiber from 2 to 3 m. In addition, the packing density was increased by 20% by optimizing the membrane element configuration. These modifications improve the efficiency of membrane cleaning associated with aeration. The target of specific energy consumption was less than 0.4 kWh·m-3 in this study. The continuous operation of a pilot MBR treating real municipal wastewater revealed that the MBR utilizing the modified membrane element can be stably operated under a specific air demand per membrane surface area (SADm) of 0.13 m3·m-2·hr-1 when the daily-averaged membrane fluxes for the constant flow rate and flow rate fluctuating modes of operation were set to 0.6 and 0.5 m3·m-2·d-1, respectively. The specific energy consumption under these operating conditions was estimated to be less than 0.37 kWh·m-3. These results strongly suggest that operating an MBR equipped with the modified membrane element with a specific energy consumption of less than 0.4 kWh·m-3 is highly possible.

Graphical abstract

Keywords

Energy-saving / Membrane bioreactor / Polytetrafluoroethylene (PTFE) membrane / Hollow fiber / Power consumption

Cite this article

Download citation ▾
Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto. Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane. Front. Environ. Sci. Eng., 2018, 12(3): 1 https://doi.org/10.1007/s11783-018-1018-y

References

[1]
Judd S. The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment. Oxford: Elsevier, 2006
[2]
Fenu A, Roels  J, Wambecq T,  De Gussem K,  Thoeye C,  De Gueldre G,  Van De Steene B. Energy audit of a full scale MBR system. Desalination, 2010, 262(1–3): 121–128
CrossRef Google scholar
[3]
Krzeminski P, van der Graaf  J H J M, van Lier  J B. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology, 2012, 65(2): 380–392
CrossRef Pubmed Google scholar
[4]
Barillon B, Martin Ruel  S, Langlais C,  Lazarova V. Energy efficiency in membrane bioreactors. Water Science and Technology, 2013, 67(12): 2685–2691
CrossRef Pubmed Google scholar
[5]
Buer T, Cumin  J. MBR module design and operation. Desalination, 2010, 262(1–3): 1073–1077
CrossRef Google scholar
[6]
Xiao K, Xu  Y, Liang S,  Lei T, Sun  J, Wen X,  Zhang H,  Chen C, Huang  X. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect. Frontiers of Environmental Science & Engineering, 2014, 8(6): 805–819
CrossRef Google scholar
[7]
Krzeminski P, Leverette  L, Malamis S,  Katsou E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 2017, 527: 207–227
CrossRef Google scholar
[8]
Tao G, Kekre  K, Oo M H,  Viswanath B,  Aliman M D Y,  Seah H. Energy reduction and optimisation in membrane bioreactors systems. Water Practice and Technology, 2010, 5(4): 88–93
[9]
Itokawa H, Tsuji  K, Yamashita K,  Hashimoto T. Design and operating experiences of full-scale municipal membrane bioreactors in Japan. Water Science and Technology, 2014, 69(5): 1088–1093
CrossRef Pubmed Google scholar
[10]
Hoque A, Kimura  K, Miyoshi T,  Yamato N,  Watanabe Y. Characteristics of foulants in air-sparged side-stream tubular membranes used in a municipal wastewater membrane bioreactor. Separation and Purification Technology, 2012, 93: 83–91
CrossRef Google scholar
[11]
Gil J A, Túa  L, Rueda A,  Montaño B,  Rodríguez M,  Prats D. Monitoring and analysis of the energy cost of an MBR. Desalination, 2010, 250(3): 997–1001
CrossRef Google scholar
[12]
Verrecht B, Maere  T, Nopens I,  Brepols C,  Judd S. The cost of a large-scale hollow fibre MBR. Water Research, 2010, 44(18): 5274–5283
CrossRef Pubmed Google scholar
[13]
Verrecht B, James  C, Germain E,  Ma W, Judd  S. Experimental evaluation of intermittent aeration of a hollow fibre membrane bioreactor. Water Science and Technology, 2011, 63(6): 1217–1223
CrossRef Pubmed Google scholar
[14]
Ho J, Smith  S, Roh H K. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane. Water Science and Technology, 2014, 70(12): 1998–2003
CrossRef Pubmed Google scholar
[15]
Kurita T, Kimura  K, Watanabe Y. Energy saving in the operation of submerged MBRs by the insertion of baffles and the introduction of granular materials. Separation and Purification Technology, 2015, 141(12): 207–213
CrossRef Google scholar
[16]
Monclús H, Dalmau  M, Gabarrón S,  Ferrero G,  Rodríguez-Roda I,  Comas J. Full-scale validation of an air scour control system for energy savings in membrane bioreactors. Water Research, 2015, 79(1): 1–9
CrossRef Pubmed Google scholar
[17]
Yan X, Wu  Q, Sun J,  Liang P,  Zhang X,  Xiao K, Huang  X. Hydrodynamic optimization of membrane bioreactor by horizontal geometry modification using computational fluid dynamics. Bioresource Technology, 2016, 200: 328–334
CrossRef Pubmed Google scholar
[18]
Miyoshi T, Yamamura  H, Morita T,  Watanabe Y. Effect of intensive membrane aeration and membrane flux on membrane fouling in submerged membrane bioreactors: Reducing specific air demand per permeate (SADp). Separation and Purification Technology, 2015, 148(25): 1–9
CrossRef Google scholar
[19]
Judd S. The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chemical Engineering Journal, 2015, 305(1): 37–45
[20]
Japan Sewage Works Association. Standard Methods for the Examination of Wastewater. Japan Sewage Works Association, Tokyo, Japan (in Japanese)
[21]
Cornel P, Wagner  M, Krause S. Investigation of oxygen transfer rates in full scale membrane bioreactors. Water Science and Technology, 2003, 47(11): 313–319
Pubmed
[22]
Krampe J, Krauth  K. Oxygen transfer into activated sludge with high MLSS concentrations. Water Science and Technology, 2003, 47(11): 297–303
Pubmed
[23]
Germain E, Nelles  F, Drews A,  Pearce P,  Kraume M,  Reid E, Judd  S J, Stephenson  T. Biomass effects on oxygen transfer in membrane bioreactors. Water Research, 2007, 41(5): 1038–1044
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer–Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(958 KB)

Accesses

Citations

Detail

Sections
Recommended

/