Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 15.

PDF(1472 KB)
PDF(1472 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 15. DOI: 10.1007/s11783-018-1017-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor

Author information +
History +

Highlights

• Mixed VOCs were successfully degraded by HSPBD reactor with Ag-Ce/γ-Al2O3 catalyst at room temperature.

• The removal performance of single-component and mixed VOCs were compared in both NTP and PPC processes.

• The single-component and mixed VOCs decomposition products after plasma-catalysis treatment were analyzed.

• There existed an optimal gas humid to achieve the highest mixed VOCs removal efficiency.

Abstract

In this study, post plasma-catalysis degradation of mixed volatile organic compounds (benzene, toluene, and xylene) has been performed in a hybrid surface/packed-bed discharge plasma reactor with Ag-Ce/g-Al2O3 catalyst at room temperature. The effect of relative air humidity on mixed VOCs degradation has also been investigated in both plasma-only and PPC systems. In comparison to the plasma-only system, a significant improvement can be observed in the degradation performance of mixed VOCs in PPC system with Ag-Ce/g-Al2O3 catalyst. In PPC system, 68% benzene, 89% toluene, and 94% xylene were degraded at 800 J·L-1, respectively, which were 25%, 11%, and 9% higher than those in plasma-only system. This result can be attributed to the high catalytic activity of Ag-Ce/g-Al2O3 catalyst to effectively decompose O3 and lead to generating more reactive species which are capable of destructing the VOCs molecules completely. Moreover, the presence of Ag-Ce/g-Al2O3 catalyst in plasma significantly decreased the emission of discharge byproducts (NOx and O3) and promoted the mineralization of mixed VOCs towards CO2. Adding a small amount of water vapor into PPC system enhanced the degradation efficiencies of mixed VOCs, however, further increasing water vapor had a negative impact on the degradation efficiencies, which was primarily attributed to the quenching of energetic electrons by water vapor in plasma and the competitive adsorption of water vapor on the catalyst surface. Meanwhile, the catalysts before and after discharge were characterized by the Brunauer-Emment-Teller and X-ray photoelectron spectroscopy.

Graphical abstract

Keywords

Mixed VOCs / HSPBD plasma reactor / Degradation / Catalyst / Relative humidity

Cite this article

Download citation ▾
Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu. Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor. Front. Environ. Sci. Eng., 2018, 12(2): 15 https://doi.org/10.1007/s11783-018-1017-z

References

[1]
Chang M B, Lee  C C. Destruction of formaldehyde with dielectric barrier discharge plasmas. Environmental Science & Technology, 1995, 29(1): 181–186
CrossRef Pubmed Google scholar
[2]
Chang J S. Recent development of plasma pollution control technology: A critical review. Science and Technology of Advanced Materials, 2001, 2(2): 571–576
CrossRef Google scholar
[3]
Marotta E, Callea  A, Rea M,  Paradisi C. DC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing. Environmental Science & Technology, 2007, 41(16): 5862–5868
CrossRef Pubmed Google scholar
[4]
Aerts R, Tu  X, Van Gaens W,  Whitehead J C,  Bogaerts A. Gas purification by nonthermal plasma: A case study of ethylene. Environmental Science & Technology, 2013, 47(12): 6478–6485
Pubmed
[5]
Mizuno A, Kisanuki  Y, Noguchi M,  Katsura S. Indoor air cleaning using a pulsed discharge plasma. IEEE Transactions on Industry Applications, 1999, 35(6): 1284–1288
CrossRef Google scholar
[6]
Wang T C, Qu  G Z, Yan  Q H, Sun  Q, Liang D,  Hu S. Optimization of gas-liquid hybrid pulsed discharge plasma for p-nitrophenol contaminated dredged sediment remediation. Journal of Electrostatics, 2015, 77: 166–173
CrossRef Google scholar
[7]
Bo Z, Yan  J, Li X,  Chi Y, Cen  K. Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds. Journal of Hazardous Materials, 2009, 166(2–3): 1210–1216
CrossRef Pubmed Google scholar
[8]
Liang W J, Li  J, Li J X,  Zhu T, Jin  Y Q. Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 2010, 175(1–3): 1090–1095
CrossRef Pubmed Google scholar
[9]
Yamamoto T, Tamanathan  K, Lawless P A. Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Transactions on Industry Applications, 1992, 28(3): 528–534
CrossRef Google scholar
[10]
Jiang N, Guo  L J, Shang  K F, Lu  N, Li J,  Wu Y. Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation. Journal of Physics. D, Applied Physics, 2017, 50(15): 155206
CrossRef Google scholar
[11]
Jiang N, Lu  N, Shang K,  Li J, Wu  Y. Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas. Environmental Science & Technology, 2013, 47(17): 9898–9903
CrossRef Pubmed Google scholar
[12]
Tang X J, Feng  F D, Ye  L L, Zhang  X, Huang Y,  Liu Z, Yan  K. Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts. Catalysis Today, 2013, 211: 39–43
CrossRef Google scholar
[13]
Einaga H, Ogata  A. Catalytic oxidation of benzene in the gas phase over alumina-supported silver catalysts. Environmental Science & Technology, 2010, 44(7): 2612–2617
CrossRef Pubmed Google scholar
[14]
Zhu X B, Gao  X, Qin R,  Zeng Y, Qu  R, Zheng C,  Tu X. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 2015, 170-171: 293–300
CrossRef Google scholar
[15]
Ding H X, Zhu  A M, Lu  F G, Xu  Y, Zhang J,  Yang X F. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. Journal of Physics. D, Applied Physics, 2006, 39(16): 3603–3608
CrossRef Google scholar
[16]
Oda T, Takahashi  T, Kohzuma S. Decomposition of dilute trichloroethylene by using nonthermal plasma processing-frequency and catalyst effects. IEEE Transactions on Industry Applications, 2001, 37(4): 965–970
CrossRef Google scholar
[17]
Karuppiah J, Reddy  E L, Reddy  P M, Ramaraju  B, Karvembu R,  Subrahmanyam Ch. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. Journal of Hazardous Materials, 2012, 237–238: 283–289
CrossRef Pubmed Google scholar
[18]
Morent R, Dewulf  J, Steenhaut N, Leys  C, Van Langenhove H. Hybrid plasma-catalyst system for the removal of trichloroethylene in air.  Journal of Advanced Oxidation Technologies, 2006, 9(1): 53–58
[19]
Zhu X B, Liu  S Y, Cai  Y X, Gao  X, Zhou J,  Zheng C,  Tu X. Post-plasma catalytic removal of methanol over Mn-Ce catalysts in an atmospheric dielectric barrier discharge. Applied Catalysis B: Environmental, 2016, 183: 124–132
CrossRef Google scholar
[20]
Fan X, Zhu  T, Sun Y,  Yan X. The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. Journal of Hazardous Materials, 2011, 196(196): 380–385
CrossRef Pubmed Google scholar
[21]
Einaga H, Ibusuki  T, Futamura S. Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene composition. IEEE Transactions on Industry Applications, 2001, 37(5): 1476–1482
CrossRef Google scholar
[22]
Jiang N, Hu  J, Li J,  Shang K,  Lu N, Wu  Y. Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 2016, 184: 355–363
CrossRef Google scholar
[23]
Chen H L, Lee  H M, Chen  S H, Chang  M B, Yu  S J, Li  S N. Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 2009, 43(7): 2216–2227
CrossRef Pubmed Google scholar
[24]
Birdsall C M, Jenkins  A C, Spadinger  E. Iodometric determination of ozone. Analytical Chemistry, 1952, 24(4): 662–664
CrossRef Google scholar
[25]
Zhang S, Jia  L, Wang W C,  Yang D Z,  Tang K, Liu  Z J. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2014, 117: 535–540
CrossRef Pubmed Google scholar
[26]
Mei D H, Zhu  X B, He  Y L. Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Science & Technology, 2015, (24): 015011
[27]
Aba’a Ndong A C,  Zouzou N,  Benard N. Geometrical optimization of a surface DBD powered by a nanosecond pulsed high voltage. Journal of Electrostatics, 2013, 71(3): 246–253
CrossRef Google scholar
[28]
Zhu X B, Gao  X, Yu X N. Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catalysis Today, 2016, (256): 108–114
[29]
Durme J V, Dewulf  J, Leys C. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 2008, 78(3–4): 324–333
CrossRef Google scholar
[30]
Skoda M, Cabala  M, Matolinova I,  Skála T,  Veltruská K,  Matolín V. A photoemission study of the ceria and Au-doped ceria/Cu(111) interfaces. Vacuum, 2009, 84(1): 8–12
CrossRef Google scholar
[31]
Ogata A, Ito  D, Mizuno K,  Kushiyama S,  Gal A, Yamamoto  T. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A, General, 2002, 236(1–2): 9–15
CrossRef Google scholar
[32]
Futamura S, Zhang  A, Einaga H,  Kabashima H. Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catalysis Today, 2002, 72(3–4): 259–265
CrossRef Google scholar
[33]
vanVeldhuizen E M. Electrical Discharges for Environmental Purposes: Fundamentals and Applications. New York: Nova Science Publishers, 2000
[34]
Durme J V, Dewulf  J, Sysmans W,  Leys C, Langenhove  H V. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental, 2007, 74(1–2): 161–169
CrossRef Google scholar
[35]
Cvetanovic R J. Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with understand hydrocarbons. Journal of Physical and Chemical Reference Data, 1987, 16(2): 261–321 
CrossRef Google scholar
[36]
Lias S G. Ionization energy evaluation, In: NIST Standard Reference Database. Maillard W G, Linstrom P J, eds. National Institute of Standard and Technology, Gaithersburg, MD, 2006

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 51507026 & 51177007), General Financial Grant from the China Postdoctoral Science Foundation (No. 2015M580223), Special Financial Grant from the China Postdoctoral Science Foundation (No. 2016T90221), and Dalian University of Technology Fundamental Research Fund (No. DUT15RC (3)030).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1472 KB)

Accesses

Citations

Detail

Sections
Recommended

/