The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45

Xiangqun Chi , Yingying Zhang , Daosheng Wang , Feihua Wang , Wei Liang

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 11

PDF (501KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 11 DOI: 10.1007/s11783-018-1016-0
RESEARCH ARTICLE
RESEARCH ARTICLE

The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45

Author information +
History +
PDF (501KB)

Abstract

Nitrobenzene degraded rapidly and was removed completely in native sediments.

Indigenous microorganisms in native sediments are abundant.

Proteobacteria and Firmicutes might play important roles in nitrobenzene removal.

P. australis could provide a more suitable environment for Thauera.

The feasibility of using Phragmites australis-JS45 system in removing nitrobenzene from sediments was conducted. However, it was observed that nitrobenzene degraded rapidly and was removed completely within 20 days in native sediments, raising the possibility that indigenous microorganisms may play important roles in nitrobenzene degradation. Consequently, this study aimed to verify this possibility and investigate the potential nitrobenzene degraders among indigenous microorganisms in sediments. The abundance of inoculated strain JS45 and indigenous bacteria in sediments was quantified using real-time polymerase chain reaction. Furthermore, community structure of the indigenous bacteria was analyzed through high throughput sequencing based on Illumina MiSeq platform. The results showed that indigenous bacteria in native sediments were abundant, approximately 1014 CFU/g dry weight, which is about six orders of magnitude higher than that in fertile soils. In addition, the levels of indigenous Proteobacteria (Acinetobacter, Comamonadaceae_uncultured, Pseudomonas, and Thauera) and Firmicutes (Clostridium, Sporacetigenium, Fusibacter, Youngiibacter, and Trichococcus) increased significantly during nitrobenzene removal. Their quantities sharply decreased after nitrobenzene was removed completely, except for Pseudomonas and Thauera. Based on the results, it can be concluded that indigenous microorganisms including Proteobacteria and Firmicutes can have great potential for removing nitrobenzene from sediments. Although P. australis - JS45 system was set up in an attempt to eliminate nitrobenzene from sediments, and the system did not meet the expectation. The findings still provide valuable information on enhancing nitrobenzene removal by optimizing the sediment conditions for better growth of indigenous Proteobacteria and Firmicutes.

Graphical abstract

Keywords

Community structure / Indigenous microorganisms / Nitrobenzene / Plant-microbe associated remediation / Sediment

Cite this article

Download citation ▾
Xiangqun Chi, Yingying Zhang, Daosheng Wang, Feihua Wang, Wei Liang. The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45. Front. Environ. Sci. Eng., 2018, 12(1): 11 DOI:10.1007/s11783-018-1016-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao SRamette ANiu G LLiu HZhou N Y. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil. FEMS Microbiology Ecology200970(2): 315–323

[2]

Dorigan JHushon J M. Air Pollution Assessment of Nitrobenzene. Mclean, Virginia: The MITRE Corporation1976(NTIS No. PB257–776)

[3]

Keith L HTelliard W A. ES&T Special Report: Priority pollutants I—A perspective view. Environmental Science & Technology197913(4): 416–423

[4]

Chen AXiao BLiang HDing CJiang G. Soil microbial community response to nitrobenzene exposure for a spartina wetland. Soil & Sediment Contamination201322(2): 174–184

[5]

Hu LZeng G MChen G QDong H RLiu Y TWan JChen A WGuo ZYan MWu H PYu Z G. Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. Journal of Hazardous Materials2016301: 106–118

[6]

Wan JZhang CZeng G MHuang D LHu LHuang CWu H PWang L L. Synthesis and evaluation of a new class of stabilized nano-chlorapatite for Pb immobilization in sediment. Journal of Hazardous Materials2016320: 278–288

[7]

Song Y YSong C CJu S BChai J HGuo JZhao Q D. Hydroponic uptake and distribution of nitrobenzene in Phragmites australis: Potential for phytoremediation. International Journal of Phytoremediation201012(3): 217–225

[8]

Wang CLi YLiu ZWang P. Bioremediation of nitrobenzene-polluted sediments by Pseudomonas putida. Bulletin of Environmental Contamination and Toxicology, 200983(6): 865–868

[9]

Li M TCui J TWang J HWang JHao L L. Isolation of nitrobenzene degrading strain Pseudomonas NB001 and application in the bioremediation of polluted water body. Journal of Environmental Science and Health Part A-Toxic/Hazard Subst Environ Eng201247(1): 70–76

[10]

Chaudhry QBlom-Zandstra MGupta SJoner E J. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science and Pollution Research International200512(1): 34–48

[11]

Hu LZhang CZeng G MChen G QWan JGuo ZWu H PYu Z GZhou Y YLiu J F. Metal-based quantum dots: Synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RSC Advances20166(82): 78595–78610

[12]

Sun Y BZhao DXu Y MWang LLiang X FShen Y. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Frontiers of Environmental Science & Engineering201610(1): 85–92 

[13]

Zeng G MWan JHuang D LHu LHuang CCheng MXue W JGong X MWang R ZJiang D N. Precipitation, adsorption and rhizosphere effect: The mechanisms for Phosphate-induced Pb immobilization in soils—A review. Journal of Hazardous Materials2017339: 354–367

[14]

Nishino S FSpain J C. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Applied and Environmental Microbiology199359(8): 2520–2525

[15]

Xia LLiu GChen C MWen M YGao Y Y. Red soil for sediment capping to control the internal nutrient release under flow conditions.  Frontiers of Environmental Science & Engineering201610(6): 14 

[16]

Chi X QZhang J JZhao SZhou N Y. Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environmental Pollution2013172(1): 33–41 doi:10.1016/j.envpol.2012.08.002 PMID:22982551

[17]

Li YLi JWang CWang P F. Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresource Technology2010101(17): 6740–6744

[18]

Ren S TLi M CSun J YBian Y HZuo K CZhang X YLiang PHuang X. A novel electrochemical reactor for nitrogen and phosphorus recovery from domestic wastewater.  Frontiers of Environmental Science & Engineering201711(4): 17 

[19]

Lessner D JJohnson G RParales R ESpain J CGibson D T. Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Applied and Environmental Microbiology200268(2): 634–641

[20]

Norman R JEdberg J CStucki J W. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry. Soil Science Society of America Journal198549(5): 1182–1185

[21]

Chi X QLiu KZhou N Y. Effects of bioaugmentation in para-nitrophenol-contaminated soil on the abundance and community structure of ammonia-oxidizing bacteria and archaea. Applied Microbiology and Biotechnology201599(14): 6069–6082

[22]

Shen J PZhang L MZhu Y GZhang J BHe J Z. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology200810(6): 1601–1611

[23]

Sun D LJiang XWu Q LZhou N Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Applied and Environmental Microbiology201379(19): 5962–5969

[24]

Liu ZLozupone CHamady MBushman F DKnight R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research200735(18): e120

[25]

Magoč TSalzberg S L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England)201127(21): 2957–2963

[26]

Schloss P DWestcott S LRyabin THall J RHartmann MHollister E BLesniewski R AOakley B BParks D HRobinson C JSahl J WStres BThallinger G GVan Horn D JWeber C F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology200975(23): 7537–7541

[27]

Niu G LZhang J JZhao SLiu HBoon NZhou N Y. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environmental Pollution2009157(3): 763–771

[28]

Laha SPetrova K P. Biodegradation of 4-nitrophenol by indigenous microbial populations in Everglades soils. Biodegradation1997, 8(5): 349–356 

[29]

Spain J CVan Veld P A. Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Applied and Environmental Microbiology198345(2): 428–435

[30]

Li Z JWei C HRen YLiang S Z. Growth characteristics and activities of nitrobenzene anaerobic biodegradation strains. Environmental Science199920(5): 20–24 in Chinese)

[31]

Lu G LGuo G LWang S JGu Q BLi F S. Screening and biodegradation of anaerobic microorganisms for nitrobenzene in water.Jo urnal of Agro-Environment Science, 2 01029(3): 556–562 (in Chinese)

[32]

Li DYang MLi Z LQi RHe J ZLiu H J. Change of bacterial communities in sediments along Songhua River in Northeastern China after a nitrobenzene pollution event. FEMS Microbiology Ecology200865(3): 494–503

[33]

Cai B CGao S XXiao LShao YKong D YWang L S. Screening of an effective nitrobenzene degrading strain and its biodegradation characteristics. Environmental Science and Technology200326(4): 1–2 (in Chinese)

[34]

Liu LJiang C YLiu X YWu J FHan J GLiu S J. Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environmental Microbiology20079(2): 465–473

[35]

Xiao YWu J FLiu HWang S JLiu S JZhou N Y. Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Applied Microbiology and Biotechnology200673(1): 166–171

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (501KB)

Supplementary files

FSE-17112-OF-CXQ_suppl_1

1597

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/