Development and case study of a new-generationmodel-VAT for analyzing the boundary conditions influence on atmosphericmercury simulation

Wenwei Yang , Yun Zhu , Carey Jang , Shicheng Long , Che-Jen Lin , Bin Yu , Zachariah Adelman , Shuxiao Wang , Jia Xing , Long Wang , Jiabin Li

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 13

PDF (683KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 13 DOI: 10.1007/s11783-018-1010-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Development and case study of a new-generationmodel-VAT for analyzing the boundary conditions influence on atmosphericmercury simulation

Author information +
History +
PDF (683KB)

Abstract

Performance of CMAQ-Hg is better usingModel-driven BCs than default BC.

Model-VAT provides a better user experienceto convert Model-driven BCs.

Model-VAT is designed to efficientlyaccess and analyze the results of multi-models.

Atmospheric models are essential tools to study the behaviorof air pollutants. To interpret the complicated atmospheric modelsimulations, a new-generation Model Visualization and Analysis Tool(Model-VAT) has been developed for scientists to analyze the modeldata and visualize the simulation results. The Model-VAT incorporatesanalytic functions of conventional tools and enhanced capabilitiesin flexibly accessing, analyzing, and comparing simulated resultsfrom multi-scale models with different map projections and grid resolutions.The performance of the Model-VAT is demonstrated by a case study ofinvestigating the influence of boundary conditions (BCs) on the ambientHg formation and transport simulated by the CMAQ model over the PearlRiver Delta (PRD) region. The alternative BC options are taken from(1) default time-independent profiles, (2) outputs from a CMAQ simulationof a larger nesting domain, and (3) concentration files from GEOS-Chem(re-gridded and re-projected using the Model-VAT). The three BC inputsand simulated ambient concentrations and deposition were comparedusing the Model-VAT. The results show that the model simulations basedon the static BCs (default profile) underestimates the Hg concentrationsby ~6.5%, dry depositions by ~9.4%, and wet depositions by ~43.2%compared to those of the model-derived (e.g. GEOS-Chem or nestingCMAQ) BCs. This study highlights the importance of model nesting approachand demonstrates that the innovative functions of Model-VAT enhancesthe efficiency of analyzing and comparing the model results from variousatmospheric model simulations.

Graphical abstract

Keywords

Model and data visualization / Model and data analysis / CMAQ / Boundary conditions / Mercury

Cite this article

Download citation ▾
Wenwei Yang, Yun Zhu, Carey Jang, Shicheng Long, Che-Jen Lin, Bin Yu, Zachariah Adelman, Shuxiao Wang, Jia Xing, Long Wang, Jiabin Li. Development and case study of a new-generationmodel-VAT for analyzing the boundary conditions influence on atmosphericmercury simulation. Front. Environ. Sci. Eng., 2018, 12(1): 13 DOI:10.1007/s11783-018-1010-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang HZhu  YJang C Lin C J Wang SFu  J SGao  JDeng S Xie JDing  DQiu X Long S. Design and demonstration of a next-generation air quality attainment assessmentsystem for PM2.5 and O3. Journal of Environmental Sciences (China)201529(3): 178–188

[2]

Zhu YLao  YJang C Lin C J Xing JWang  SFu J S Deng SXie  JLong S. Development and case studyof a science-based software platform to support policy making on airquality. Journal of Environmental Sciences(China)201527(1): 97–107

[3]

Byun D WChing  J K SByun  D WChing  J K S. Science Algorithms of the EPA Models- 3 Community Multiscale AirQuality (CMAQ) Modeling System. Environmental Protection Agency Office of Research & Development1999

[4]

Thorpe SAmbrosiano  JBalay R Coats C Eyth AFine  SDan H Smith T Tray-Anov A Turner T. The Package for Analysis and Visualization of Environmental Data. Computing in Environmental Resource Management, Air and Waste ManagementAssociation1996

[5]

Schwede DCollier  NDolph J Widing M A B Howe T. A New Tool for Analyzing CMAQ Modeling Results: Visualization Environment forRich Data Interpretation (VERDI). 2007

[6]

You ZZhu  YJang C Wang SGao  JLin C J Li MZhu  ZWei H Yang W. Response surface modeling-basedsource contribution analysis and VOCs emission control policy assessmentin a typical ozone-polluted urban Shunde, China. Journal of Environmental Sciences (China)201651: 294–304

[7]

Long SYun  ZJang C Lin C J Wang SZhao  BJian G Shuang D Xie JQiu  X. A case study of development and application of a streamlined control and response modeling systemfor PM2.5 attainment assessment in China. Journal of Environmental Sciences (China)201641(3): 69–80

[8]

Skamarock W C Klemp J B Dudhia J Gill D O Barker D M Wang WPowers  J G. A Description of the Advanced Research WRF Version 2. NCAR Technical Note NCAR/TN-468+STR200588: 7–25

[9]

Selin N EJacob  D J. Seasonal and spatial patterns of mercury wet deposition in the United States:constraints on the contribution from North American anthropogenicsources. Atmospheric Environment200842(21): 5193–5204

[10]

Venkatram ABrode  R WLee  R FPaine  R JPeters  W DWeil  J CCimorelli  A JWilson  R BPerry  S G. AERMOD: A dispersion model for industrial source applications.Part I: General model formulation and boundary layer characterization. Journal of Applied Meteorology200544(5): 682–693

[11]

Perry S GCimorelli  A JPaine  R JBrode  R WWeil  J CVenkatram  AWilson R B Lee R F Peters W D. AERMOD: A dispersion model for industrial source applications.Part II: Model performance against 17 field study databases. Journal of Applied Meteorology200544(5): 694–708

[12]

Russell ADennis  R. NARSTO critical review of photochemical models and modeling. Atmospheric Environment200034(12–14): 2283–2324

[13]

Zhang L. Intercontinental transport of air pollution. Frontiers of Environmental Science & Engineeringin China20104(1): 20–29

[14]

Myers TAtkinson  R DBullock  O RBash  J O. Investigation of effects of varying model inputs on mercurydeposition estimates in the Southwest US. Atmospheric Chemistry and Physics201212(4): 10273–10304

[15]

Grant S LKim  MLin P Crist K C Ghosh S Kotamarthi V R. A simulation study of atmospheric mercury and its depositionin the Great Lakes. Atmospheric Environment201494: 164–172

[16]

Pleim JRoselle  SYoung J Gipson G Mathur R Roselle S Young J Gipson G Mathur R. New developments in the community multiscale air quality(CMAQ) model. Atmospheric Chemistry andPhysics Discussion2012, (1): 2131–2166

[17]

Wang S XLiu  MJiang J K Hao J M Wu YStreets  D G. Estimate the mercury emissions from non-coal sourcesin China. Environmental Sciences200627(12): 2401

[18]

Jaeglé LStrode  S ASelin  N EJacob  D J. The Geos-Chem model. Mercury Fate and Transport in the Global Atmosphere:Emissions, Measurements and Models. New York: Springer2009: 533–545

[19]

Strode S AJaegle  LJaffe D A Swartzendruber P C Selin N E Holmes C Yantosca R M. Trans-Pacific transport of mercury.  Journal of Geophysical Research, D, Atmospheres2008113(D15): D15305 

[20]

AMAP/UNEP. Technical Background Report for the Global Mercury Assessment2013. Arctic Monitoringand Assessment Programme,Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland2013

[21]

Moon N KByun  D W. A Simple User's Guide for “geos2cmaq” Code: Linking CMAQ with GEOS-CHEM. Version 1.0, Interim report from Institute forMultidimensional Air Quality studies (IMAQS), University of Houston,TX. Available online at: 160;2004

[22]

Gbor P KWen  DMeng F Yang FZhang  BSloan J J. Improved model for mercury emission, transport and deposition. Atmospheric Environment200640(5): 973–983

[23]

Pongprueksa PLin  C JLindberg  S EJang  CBraverman T Russell Bullock O Jr Ho T C Chu H W. Scientific uncertainties in atmospheric mercury models III: Boundaryand initial conditions, model grid resolution, and Hg(II) reductionmechanism. Atmospheric Environment200842(8): 1828–1845

[24]

Wang LWang  SZhang L Wang YZhang  YNielsen C McElroy M B Hao J. Source apportionment of atmosphericmercury pollution in China using the GEOS-Chem model. Environmental Pollution2014190: 166–175

[25]

Gao WTang  GDongsheng J. Implementation effects and countermeasuresof China’s Air Pollution Prevention and Control Action Plan. Research of Environmental Sciences201629(11): 1567–1574 (in Chinese) 

[26]

Wang SZhang  LWang L Wu QWang  FHao J. A review of atmospheric mercury emissions, pollutionand control in China. Frontiers of EnvironmentalScience & Engineering20148(5): 631–649

[27]

Buch A CCorreia  M E FTeixeira  D CSilva-Filho  E V. Characterization of soil fauna under the influence ofmercury atmospheric deposition in Atlantic Forest, Rio de Janeiro,Brazil. Journal of Environmental Sciences(China)201532(6): 217–227

[28]

Li ZXia  CWang X Xiang Y Xie Z. Total gaseous mercury inPearl River Delta region, China during 2008 winter period. Atmospheric Environment201145(4): 834–838

[29]

Chen LLiu  MXu Z Fan RTao  JChen D Zhang D Xie DSun  J. Variation trends and influencing factors of total gaseous mercury in the PearlRiver Delta—A highly industrialised region in South China influencedby seasonal monsoons. Atmospheric Environment201377(7): 757–766 

[30]

Liu MChen  L GFan  R FXu  Z CChen  D HZhang  D QZheng  J PZhou  YSun J R. Preliminary study of the concentration and variation characteristicsof total gaseous mercury in Dinghu Mountain Area. Acta Scientiae Circumstantiae201232(4): 932–939

[31]

Liu MChen  L GTao  JXu Z C Zhu L H Qian D L Fan R F. Seasonal and diurnal variation of total gaseous mercury in Guangzhou City,China. Environmental Sciences201232(9): 1554–1558

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbHGermany

AI Summary AI Mindmap
PDF (683KB)

1778

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/