Development and case study of a new-generation model-VAT for analyzing the boundary conditions influence on atmospheric mercury simulation

Wenwei Yang, Yun Zhu, Carey Jang, Shicheng Long, Che-Jen Lin, Bin Yu, Zachariah Adelman, Shuxiao Wang, Jia Xing, Long Wang, Jiabin Li

PDF(683 KB)
PDF(683 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 13. DOI: 10.1007/s11783-018-1010-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Development and case study of a new-generation model-VAT for analyzing the boundary conditions influence on atmospheric mercury simulation

Author information +
History +

Highlights

Performance of CMAQ-Hg is better usingModel-driven BCs than default BC.

Model-VAT provides a better user experienceto convert Model-driven BCs.

Model-VAT is designed to efficientlyaccess and analyze the results of multi-models.

Abstract

Atmospheric models are essential tools to study the behaviorof air pollutants. To interpret the complicated atmospheric modelsimulations, a new-generation Model Visualization and Analysis Tool(Model-VAT) has been developed for scientists to analyze the modeldata and visualize the simulation results. The Model-VAT incorporatesanalytic functions of conventional tools and enhanced capabilitiesin flexibly accessing, analyzing, and comparing simulated resultsfrom multi-scale models with different map projections and grid resolutions.The performance of the Model-VAT is demonstrated by a case study ofinvestigating the influence of boundary conditions (BCs) on the ambientHg formation and transport simulated by the CMAQ model over the PearlRiver Delta (PRD) region. The alternative BC options are taken from(1) default time-independent profiles, (2) outputs from a CMAQ simulationof a larger nesting domain, and (3) concentration files from GEOS-Chem(re-gridded and re-projected using the Model-VAT). The three BC inputsand simulated ambient concentrations and deposition were comparedusing the Model-VAT. The results show that the model simulations basedon the static BCs (default profile) underestimates the Hg concentrationsby ~6.5%, dry depositions by ~9.4%, and wet depositions by ~43.2%compared to those of the model-derived (e.g. GEOS-Chem or nestingCMAQ) BCs. This study highlights the importance of model nesting approachand demonstrates that the innovative functions of Model-VAT enhancesthe efficiency of analyzing and comparing the model results from variousatmospheric model simulations.

Graphical abstract

Keywords

Model and data visualization / Model and data analysis / CMAQ / Boundary conditions / Mercury

Cite this article

Download citation ▾
Wenwei Yang, Yun Zhu, Carey Jang, Shicheng Long, Che-Jen Lin, Bin Yu, Zachariah Adelman, Shuxiao Wang, Jia Xing, Long Wang, Jiabin Li. Development and case study of a new-generationmodel-VAT for analyzing the boundary conditions influence on atmosphericmercury simulation. Front. Environ. Sci. Eng., 2018, 12(1): 13 https://doi.org/10.1007/s11783-018-1010-6

References

[1]
Wang H, Zhu  Y, Jang C,  Lin C J,  Wang S, Fu  J S, Gao  J, Deng S,  Xie J, Ding  D, Qiu X,  Long S. Design and demonstration of a next-generation air quality attainment assessmentsystem for PM2.5 and O3. Journal of Environmental Sciences (China), 2015, 29(3): 178–188
CrossRef Google scholar
[2]
Zhu Y, Lao  Y, Jang C,  Lin C J,  Xing J, Wang  S, Fu J S,  Deng S, Xie  J, Long S. Development and case studyof a science-based software platform to support policy making on airquality. Journal of Environmental Sciences(China), 2015, 27(1): 97–107
CrossRef Google scholar
[3]
Byun D W, Ching  J K S, Byun  D W, Ching  J K S. Science Algorithms of the EPA Models- 3 Community Multiscale AirQuality (CMAQ) Modeling System. Environmental Protection Agency Office of Research & Development, 1999
[4]
Thorpe S, Ambrosiano  J, Balay R,  Coats C,  Eyth A, Fine  S, Dan H,  Smith T,  Tray-Anov A,  Turner T. The Package for Analysis and Visualization of Environmental Data. Computing in Environmental Resource Management, Air and Waste ManagementAssociation, 1996
[5]
Schwede D, Collier  N, Dolph J,  Widing M A B,  Howe T. A New Tool for Analyzing CMAQ Modeling Results: Visualization Environment forRich Data Interpretation (VERDI). 2007
[6]
You Z, Zhu  Y, Jang C,  Wang S, Gao  J, Lin C J,  Li M, Zhu  Z, Wei H,  Yang W. Response surface modeling-basedsource contribution analysis and VOCs emission control policy assessmentin a typical ozone-polluted urban Shunde, China. Journal of Environmental Sciences (China), 2016, 51: 294–304
CrossRef Google scholar
[7]
Long S, Yun  Z, Jang C,  Lin C J,  Wang S, Zhao  B, Jian G,  Shuang D,  Xie J, Qiu  X. A case study of development and application of a streamlined control and response modeling systemfor PM2.5 attainment assessment in China. Journal of Environmental Sciences (China), 2016, 41(3): 69–80
CrossRef Google scholar
[8]
Skamarock W C,  Klemp J B,  Dudhia J,  Gill D O,  Barker D M,  Wang W, Powers  J G. A Description of the Advanced Research WRF Version 2. NCAR Technical Note NCAR/TN-468+STR, 2005, 88: 7–25
[9]
Selin N E, Jacob  D J. Seasonal and spatial patterns of mercury wet deposition in the United States:constraints on the contribution from North American anthropogenicsources. Atmospheric Environment, 2008, 42(21): 5193–5204
CrossRef Google scholar
[10]
Venkatram A, Brode  R W, Lee  R F, Paine  R J, Peters  W D, Weil  J C, Cimorelli  A J, Wilson  R B, Perry  S G. AERMOD: A dispersion model for industrial source applications.Part I: General model formulation and boundary layer characterization. Journal of Applied Meteorology, 2005, 44(5): 682–693
CrossRef Google scholar
[11]
Perry S G, Cimorelli  A J, Paine  R J, Brode  R W, Weil  J C, Venkatram  A, Wilson R B,  Lee R F,  Peters W D. AERMOD: A dispersion model for industrial source applications.Part II: Model performance against 17 field study databases. Journal of Applied Meteorology, 2005, 44(5): 694–708
CrossRef Google scholar
[12]
Russell A, Dennis  R. NARSTO critical review of photochemical models and modeling. Atmospheric Environment, 2000, 34(12–14): 2283–2324
CrossRef Google scholar
[13]
Zhang L. Intercontinental transport of air pollution. Frontiers of Environmental Science & Engineeringin China, 2010, 4(1): 20–29
CrossRef Google scholar
[14]
Myers T, Atkinson  R D, Bullock  O R, Bash  J O. Investigation of effects of varying model inputs on mercurydeposition estimates in the Southwest US. Atmospheric Chemistry and Physics, 2012, 12(4): 10273–10304
[15]
Grant S L, Kim  M, Lin P,  Crist K C,  Ghosh S,  Kotamarthi V R. A simulation study of atmospheric mercury and its depositionin the Great Lakes. Atmospheric Environment, 2014, 94: 164–172
CrossRef Google scholar
[16]
Pleim J, Roselle  S, Young J,  Gipson G,  Mathur R,  Roselle S,  Young J,  Gipson G,  Mathur R. New developments in the community multiscale air quality(CMAQ) model. Atmospheric Chemistry andPhysics Discussion, 2012, (1): 2131–2166
[17]
Wang S X, Liu  M, Jiang J K,  Hao J M,  Wu Y, Streets  D G. Estimate the mercury emissions from non-coal sourcesin China. Environmental Sciences, 2006, 27(12): 2401
[18]
Jaeglé L, Strode  S A, Selin  N E, Jacob  D J. The Geos-Chem model. Mercury Fate and Transport in the Global Atmosphere:Emissions, Measurements and Models. New York: Springer, 2009: 533–545
[19]
Strode S A, Jaegle  L, Jaffe D A,  Swartzendruber P C,  Selin N E,  Holmes C,  Yantosca R M. Trans-Pacific transport of mercury.  Journal of Geophysical Research, D, Atmospheres, 2008, 113(D15): D15305 
CrossRef Google scholar
[20]
AMAP/UNEP. Technical Background Report for the Global Mercury Assessment2013. Arctic Monitoringand Assessment Programme,Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland, 2013
[21]
Moon N K, Byun  D W. A Simple User's Guide for “geos2cmaq” Code: Linking CMAQ with GEOS-CHEM. Version 1.0, Interim report from Institute forMultidimensional Air Quality studies (IMAQS), University of Houston,TX. Available online at: http://www.math.unh.edu/wdwbyun/Meetings/icap/. 2004
[22]
Gbor P K, Wen  D, Meng F,  Yang F, Zhang  B, Sloan J J. Improved model for mercury emission, transport and deposition. Atmospheric Environment, 2006, 40(5): 973–983
CrossRef Google scholar
[23]
Pongprueksa P, Lin  C J, Lindberg  S E, Jang  C, Braverman T,  Russell Bullock O Jr,  Ho T C,  Chu H W. Scientific uncertainties in atmospheric mercury models III: Boundaryand initial conditions, model grid resolution, and Hg(II) reductionmechanism. Atmospheric Environment, 2008, 42(8): 1828–1845
CrossRef Google scholar
[24]
Wang L, Wang  S, Zhang L,  Wang Y, Zhang  Y, Nielsen C,  McElroy M B,  Hao J. Source apportionment of atmosphericmercury pollution in China using the GEOS-Chem model. Environmental Pollution, 2014, 190: 166–175
CrossRef Google scholar
[25]
Gao W, Tang  G, Dongsheng J. Implementation effects and countermeasuresof China’s Air Pollution Prevention and Control Action Plan. Research of Environmental Sciences, 2016, 29(11): 1567–1574 (in Chinese) 
[26]
Wang S, Zhang  L, Wang L,  Wu Q, Wang  F, Hao J. A review of atmospheric mercury emissions, pollutionand control in China. Frontiers of EnvironmentalScience & Engineering, 2014, 8(5): 631–649
CrossRef Google scholar
[27]
Buch A C, Correia  M E F, Teixeira  D C, Silva-Filho  E V. Characterization of soil fauna under the influence ofmercury atmospheric deposition in Atlantic Forest, Rio de Janeiro,Brazil. Journal of Environmental Sciences(China), 2015, 32(6): 217–227
CrossRef Google scholar
[28]
Li Z, Xia  C, Wang X,  Xiang Y,  Xie Z. Total gaseous mercury inPearl River Delta region, China during 2008 winter period. Atmospheric Environment, 2011, 45(4): 834–838
CrossRef Google scholar
[29]
Chen L, Liu  M, Xu Z,  Fan R, Tao  J, Chen D,  Zhang D,  Xie D, Sun  J. Variation trends and influencing factors of total gaseous mercury in the PearlRiver Delta—A highly industrialised region in South China influencedby seasonal monsoons. Atmospheric Environment, 2013, 77(7): 757–766 
CrossRef Google scholar
[30]
Liu M, Chen  L G, Fan  R F, Xu  Z C, Chen  D H, Zhang  D Q, Zheng  J P, Zhou  Y, Sun J R. Preliminary study of the concentration and variation characteristicsof total gaseous mercury in Dinghu Mountain Area. Acta Scientiae Circumstantiae, 2012, 32(4): 932–939
[31]
Liu M, Chen  L G, Tao  J, Xu Z C,  Zhu L H,  Qian D L,  Fan R F. Seasonal and diurnal variation of total gaseous mercury in Guangzhou City,China. Environmental Sciences, 2012, 32(9): 1554–1558

Acknowledgements

Financial support for this work is providedby the National Key Research and Development Program of China (GrantNo. 2016YFC0207605), the U.S. Environmental Protection Agency (No.EP-D-12-044), Key Program of National Natural Science Foundation ofChina (Grant No. 41430754), the Guangdong Provincial Science and TechnologyPlan Projects (Nos. 2014A050503019 & 2016A020221001), GuangzhouEnvironmental Protection Bureau (x2hjB2150020) and the Special Programfor Applied Research on Super Computation of the NSFC-Guangdong JointFund (U1501501) (the second phase).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbHGermany
AI Summary AI Mindmap
PDF(683 KB)

Accesses

Citations

Detail

Sections
Recommended

/