New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study

Ling Li , Yu He , Xia Lu

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 11

PDF (373KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 11 DOI: 10.1007/s11783-018-1007-1
research-article
research-article

New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study

Author information +
History +
PDF (373KB)

Abstract

Hg0 is chemically adsorbed and fully oxidized by surface oxygen on CeO2.

HCl promotes the desorption of oxidized Hg on CeO2.

Surface oxygen is consumed by the H provided by HCl.

Desorption of oxidized Hg is a rate-determining step.

Maintenance of sufficient active surface oxygen is another rate-determining step.

First-principles calculations were performed to investigate the mechanism of Hg0 adsorption and oxidation on CeO2(111). Surface oxygen activated by the reduction of Ce4+ to Ce3+ was vital to Hg0 adsorption and oxidation processes. Hg0 was fully oxidized by the surface lattice oxygen on CeO2(111), without using any other oxidizing agents. HCl could dissociate and react with the Hg adatom on CeO2(111) to form adsorbed Hg–Cl or Cl–Hg–Cl groups, which promoted the desorption of oxidized Hg and prevented CeO2 catalyst deactivation. In contrast, O–H and H–O–H groups formed during HCl adsorption consumed the active surface oxygen and prohibited Hg oxidation. The consumed surface oxygen was replenished by adding O2 into the flue gas. We proposed that oxidized Hg desorption and maintenance of sufficient active surface oxygen were the rate-determining steps of Hg0 removal on CeO2-based catalysts. We believe that our thorough understanding and new insights into the mechanism of the Hg0 removal process will help provide guidelines for developing novel CeO2-based catalysts and enhance the Hg0 removal efficiency.

Graphical abstract

Keywords

Elemental mercury removal / Surface adsorption / Ceria / First-principles calculations

Cite this article

Download citation ▾
Ling Li, Yu He, Xia Lu. New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study. Front. Environ. Sci. Eng., 2018, 12(2): 11 DOI:10.1007/s11783-018-1007-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pavlish J HSondreal  E AMann  M DOlson  E SGalbreath  K CLaudal  D LBenson  S A. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology200382(2-3): 89–165

[2]

Mergler DAnderson  H AChan  L HMahaffey  K RMurray  MSakamoto M Stern A H. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio200736(1): 3–11

[3]

Wu QWang  SLi G Liang S Lin C J Wang YCai  SLiu K Hao J. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978–2014. Environmental Science & Technology201650(24): 13428–13435

[4]

Presto A AGranite  E J. Survey of catalysts for oxidation of mercury in flue gas. Environmental Science & Technology200640(18): 5601–5609

[5]

Galbreath K C Zygarlicke C J. Mercury speciation in coal combustion and gasification flue gases. Environmental Science & Technology199630(8): 2421–2426

[6]

Wilcox JRupp  EYing S C Lim D H Negreira A S Kirchofer A Feng FLee  K. Mercury adsorption and oxidation in coal combustion and gasification processes. International Journal of Coal Geology201290–91: 4–20

[7]

Monnell J DVidic  R DGang  DKarash A Granite E J. Recent Advances in Trace Metal Capture Using Micro and Nano-Scale Sorbents. In: Proceedings of the 23rd Pittsburgh Coal Conference. Pittsburgh, PA: University of Pittsburgh2006

[8]

Granite E JPennline  H WHargis  R A. Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research200039(4): 1020–1029

[9]

Hua X YZhou  J SLi  QLuo Z Y Cen K F. Gas-phase elemental mercury removal by CeO2 impregnated activated coke. Energy & Fuels201024(10): 5426–5431

[10]

Li HWu  C YLi  YZhang J. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environmental Science & Technology201145(17): 7394–7400

[11]

Zhou JHou  WQi P Gao XLuo  ZCen K. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas. Environmental Science & Technology201347(17): 10056–10062

[12]

Chang HWu  QZhang T Li MSun  XLi J Duan LHao  J. Design strategies for CeO2-MoO3 catalysts for DeNOx and Hg0 oxidation in the presence of HCl: The significance of the surface acid-base properties. Environmental Science & Technology201549(20): 12388–12394

[13]

Li HWu  SWu C Y Wang JLi  LShih K. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst. Environmental Science & Technology201549(12): 7373–7379

[14]

Wang YChang  HShi C Duan LLi  JZhang G Guo LYou  Y. Novel Fe-Ce-O mixed metal oxides catalyst prepared by hydrothermal method for Hg0 oxidation in the presence of NH3. Catalysis Communications2017100: 210–213

[15]

Reddy B MKhan  AYamada Y Kobayashi T Loridant S Volta J C. Structural characterization of CeO2-MO2 (M= Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques. Journal of Physical Chemistry B2003107(41): 5162–5167

[16]

Bera PPatil  K CJayaram  VSubbanna G N Hegde M S. Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation. Journal of Catalysis2000196(2): 293–301

[17]

Roy SMarimuthu  AHegde M S Madras G. High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2-d: Catalytic and kinetic studies. Applied Catalysis B: Environmental200771(1-2): 23–31

[18]

Cui LTang  YZhang H Hector L G Jr,  Ouyang C Shi SLi  HChen L. First-principles investigation of transition metal atom M (M= Cu, Ag, Au) adsorption on CeO2(110). Physical Chemistry Chemical Physics201214(6): 1923–1933

[19]

Lim D HAboud  SWilcox J. Investigation of adsorption behavior of mercury on Au(111) from first principles. Environmental Science & Technology201246(13): 7260–7266

[20]

Lim D HWilcox  J. Heterogeneous mercury oxidation on au(111) from first principles. Environmental Science & Technology201347(15): 8515–8522

[21]

Jung J EGeatches  DLee K Aboud S Brown G E Jr,  Wilcox J. First-principles investigation of mercury adsorption on the a-Fe2O3 surface. Journal of Physical Chemistry C2015119(47): 26512–26518

[22]

Zhang BLiu  JZheng C Chang M. Theoretical study of mercury species adsorption mechanism on MnO2(110) surface. Chemical Engineering Journal2014256(256): 93–100

[23]

Zhang BLiu  JShen F. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: density functional theory study. Journal of Physical Chemistry C2015119(27): 15047–15055

[24]

Fabris SGironcol  S DBaroni  SVicario G Balducci G. Taming multiple valency with density functionals: A case study of defective ceria. Physical Review B: Condensed Matter and Materials Physics200571(4): 041102

[25]

Da Silva J L F Ganduglia-Pirovano M V Sauer J Bayer V Kresse G. Hybrid functionals applied to rare-earth oxides: The example of ceria. Physical Review B: Condensed Matter and Materials Physics200775(4): 045121

[26]

Loschen CCarrasco  JNeyman K M Illas F.First-principles LDA+ U and GGA+ U study of cerium oxides: Dependence on the effective U parameter. Physical Review B: Condensed Matter and Materials Physics200775(3): 035115 

[27]

Kresse GHafner  J. Ab initio molecular dynamics for liquid metals. Physical Review B: Condensed Matter and Materials Physics199347(1): 558–561

[28]

Kresse GFurthmüller  J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter and Materials Physics199654(16): 11169–11186

[29]

Kresse GFurthmüller  J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science19966(1): 15–50

[30]

Blöchl P E. Projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics199450(24): 17953–17979

[31]

Perdew J PBurke  KErnzerhof M. Generalized gradient approximation made simple. Physical Review Letters199677(18): 3865–3868

[32]

Perdew J PBurke  KErnzerhof M. Generalized gradient approximation made simple. Physical Review Letters199778(7): 1396 

[33]

Zhang CMichaelides  AKing D A Jenkins S. Oxygen vacancy clusters on ceria: Decisive role of cerium f electrons. Physical Review B: Condensed Matter200979(7): 075433

[34]

Fabris Sde Gironcoli  SBaroni S Vicario G Balducci G. Taming multiple valency with density functionals: A case study of defective ceria. Physical Review B: Condensed Matter and Materials Physics200572(23): 237102

[35]

Tang WSanville  EHenkelman G. A grid-based Bader analysis algorithm without lattice bias. Journal of Physics Condensed Matter200921(8): 084204

[36]

Sanville EKenny  S DSmith  RHenkelman G. Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry200728(5): 899–908

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (373KB)

4529

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/