Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure

Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 9.

PDF(313 KB)
PDF(313 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 9. DOI: 10.1007/s11783-017-1004-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure

Author information +
History +

Highlights

The methanogenesis was severely inhibited with 0.46 mM ASA addition.

PO43 didn’t attenuate the methanogenesis inhibition in the existence of ASA.

ASA was transformed to As(III), As(V), MMA and DMA in anaerobic digestion.

Cu2+ mitigated the methanogenesis inhibition via impeding the degradation of ASA.

Abstract

Arsanilic acid (ASA), copper ion (Cu2+) and phosphate (PO43) are widely used as feed additives for pigs. Most of these three supplemented feed additives were excreted in feces and urine. Anaerobic digestion is often used for the management of pig manure. However, the interaction of ASA with Cu2+ or PO43 on anaerobic digestion is still not clear. In this study, the influence of ASA, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure and the possible mechanisms were investigated. The initial concentrations of ASA, Cu2+ and PO43 were 0.46 mM, 2 mM and 2 mM in the anaerobic digester, respectively. The methanogenesis was severely inhibited in the assays with only ASA addition, only Cu2+ addition and ASA+ PO43 addition with the inhibition index of 97.8%, 46.6% and 82.6%, respectively, but the methanogenesis inhibition in the assay with ASA+ Cu2+ addition was mitigated with the inhibition index of 39.4%. PO43 had no obvious impacts on the degradation of ASA. However, Cu2+ addition inhibited the degradation of ASA, mitigating the methanogenesis inhibition. The existence of ASA would inhibit methanogenesis and generate more toxic inorganic arsenic compounds during anaerobic digestion, implying the limitation of anaerobic digestion for ASA- contaminated animal manure. However, the co-existence of ASA and Cu2+ could mitigate the inhibition. These results could provide useful information for the management of anaerobic digestion of pig manure containing ASA with Cu2+.

Graphical abstract

Keywords

Arsanilic acid (ASA) / Methanogenesis / Inhibition / Copper / Phosphate / Inorganic arsenics

Cite this article

Download citation ▾
Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure. Front. Environ. Sci. Eng., 2018, 12(2): 9 https://doi.org/10.1007/s11783-017-1004-9

References

[1]
Mata-Alvarez J, Dosta J, Romero-Güiza  M S, Fonoll X, Peces M, Astals S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable & Sustainable Energy Reviews, 2014, 36: 412–427
CrossRef Google scholar
[2]
Wu G, Healy M G, Zhan X. Effect of the solid content on anaerobic digestion of meat and bone meal. Bioresource Technology, 2009, 100(19): 4326–4331
CrossRef Pubmed Google scholar
[3]
Ministry of Agriculture of the People’s Republic of China. Scheme for promoting the utilization of agricultural wastes. 2016. Available online at http://www.moa.gov.cn/govpublic/FZJHS/201609/t20160919_5277846.htm (accessed August 11, 2016) (in Chinese)
[4]
Abbasi T, Tauseef S M, Abbasi S A. Anaerobic digestion for global warming control and energy generation-An overview. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3228–3242
CrossRef Google scholar
[5]
Xie S H, Lawlor P G, Frost P, Dennehy C D, Hu Z H, Zhan X M. A pilot scale study on synergistic effects of co-digestion of pig manure and grass silage. International Biodeterioration & Biodegradation, 2017, 123: 244–250
CrossRef Google scholar
[6]
Sutton A L, Brumm M C, Kelly D T, Henderson C A, Mayrose V B. Effect of dietary salt, arsenic and copper additions and waste management systems on selected microbial organisms in swine wastes. Journal of Animal Science, 1980, 51(4): 791–797
CrossRef Pubmed Google scholar
[7]
Liu X, Zhang W, Hu Y, Cheng H. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC–ICP-MS. Microchemical Journal, 2013, 108(3): 38–45
CrossRef Google scholar
[8]
Sierra-Alvarez R, Cortinas I, Field J A. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds. Journal of Hazardous Materials, 2010, 175(1–3): 352–358
CrossRef Pubmed Google scholar
[9]
Wang H L, Hu Z H, Tong Z L, Xu Q, Wang W, Yuan S J. Effect of arsanilic acid on anaerobic methanogenic process: Kinetics, inhibition and biotransformation analysis. Biochemical Engineering Journal, 2014, 91(91): 179–185
CrossRef Google scholar
[10]
Sierra-Alvarez R, Cortinas I, Yenal U, Field J A. Methanogenic inhibition by arsenic compounds. Applied and Environmental Microbiology, 2004, 70(9): 5688–5691
CrossRef Pubmed Google scholar
[11]
Shi L, Wang W, Yuan S J, Hu Z H. Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions. Environmental Science & Technology, 2014, 48(14): 7951–7958
CrossRef Pubmed Google scholar
[12]
Shui M C, Ji F, Tang R, Yuan S J, Zhan X M, Wang W, Hu Z H. Impact of roxarsone on the UASB reactor performance and its degradation. Frontiers of Environmental Science & Engineering, 2016, 10(6): 4
CrossRef Google scholar
[13]
Stolz J F, Perera E, Kilonzo B, Kail B, Crable B, Fisher E, Ranganathan M, Wormer L, Basu P.Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environmental Science & Technology, 2007, 41(3): 818–823
[14]
Bikker P, Jongbloed A W, van Baal J. Dose-dependent effects of copper supplementation of nursery diets on growth performance and fecal consistency in weaned pigs. Journal of Animal Science, 2016, 94(S3): 181–186
CrossRef Google scholar
[15]
Bolan N S, Khan M A, Donaldson J, Adriano D C, Matthew C. Distribution and bioavailability of copper in farm effluent. The Science of the Total Environment, 2003, 309(1–3): 225–236
CrossRef Pubmed Google scholar
[16]
Li Y X, Li W, Wu J, Xu L C, Su Q H, Xiong X. Contribution of additives Cu to its accumulation in pig feces: study in Beijing and Fuxin of China. Journal of Environmental Sciences-China, 2007, 19(5): 610–615
CrossRef Pubmed Google scholar
[17]
Guo J, Ostermann A, Siemens J, Dong R, Clemens J. Short term effects of copper, sulfadiazine and difloxacin on the anaerobic digestion of pig manure at low organic loading rates. Waste Management (New York, N.Y.), 2012, 32(1): 131–136
CrossRef Pubmed Google scholar
[18]
Boonsawang P, Rerngnarong A, Tongurai C, Chaiprapat S. Effect of nitrogen and phosphorus on the performance of acidogenic and methanogenic reactors for treatment of biodiesel wastewater. Songklanakarin Journal of Science and Technology, 2014, 36(6): 643–649
[19]
Zayed G, Winter J. Inhibition of methane production from whey by heavy metals--protective effect of sulfide. Applied Microbiology and Biotechnology, 2000, 53(6): 726–731
CrossRef Pubmed Google scholar
[20]
Tang R, Chen H, Yuan S J, Zhan X M, Wang W, Hu Z H. Arsenic accumulation and volatilization in a 260-day cultured upflow anaerobic sludge blanket (UASB) reactor. Chemical Engineering Journal, 2017, 311: 277–283
CrossRef Google scholar
[21]
Mahar R B, Sahito A R, Yue D, Khan K. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator. Frontiers of Environmental Science & Engineering, 2016, 10(1): 159–167
CrossRef Google scholar
[22]
Mu Y, Yu H Q, Wang G. A kinetic approach to anaerobic hydrogen-producing process. Water Research, 2007, 41(5): 1152–1160
CrossRef Pubmed Google scholar
[23]
Zwietering M H, Jongenburger I, Rombouts F M, van ’t Riet K. Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 1990, 56(6): 1875–1881
Pubmed
[24]
Hu Z H, Yu H Q. Anaerobic digestion of cattail by rumen cultures. Waste Management (New York, N.Y.), 2006, 26(11): 1222–1228
CrossRef Pubmed Google scholar
[25]
Zhang F F, Wang W, Yuan S J, Hu Z H. Biodegradation and speciation of roxarsone in an anaerobic granular sludge system and its impacts. Journal of Hazardous Materials, 2014, 279(5): 562–568
CrossRef Pubmed Google scholar
[26]
Rosen B P, Ajees A A, McDermott T R. Life and death with arsenic. Bioessays, 2011, 33(5): 350–357
CrossRef Pubmed Google scholar
[27]
Li W W, Yu H Q. From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: a future paradigm. Biotechnology Advances, 2011, 29(6): 972–982
CrossRef Pubmed Google scholar
[28]
Mu Y, Wang G, Yu H Q. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme and Microbial Technology, 2006, 38(7): 905–913
CrossRef Google scholar
[29]
Mu Y, Yu H Q, Wang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme and Microbial Technology, 2007, 40(4): 947–953
CrossRef Google scholar
[30]
Gonzalez-Estrella J, Puyol D, Sierra-Alvarez R, Field J A. Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. Journal of Hazardous Materials, 2015, 283: 755–763
CrossRef Pubmed Google scholar
[31]
Zhang M, He Z P, Yuan H, Zhu L, Guo C Z, Yin L, Wu J, Deng S J, Yuan L Y, Wen L X. DNA damage and decrease of cellular oxidase activity in piglet Sertoli cells exposed to arsanilic acid. The Journal of Veterinary Medical Science, 2011, 73(2): 199–203
CrossRef Pubmed Google scholar
[32]
Kim K W, Bang S, Zhu Y, Meharg A A, Bhattacharya P. Arsenic geochemistry, transport mechanism in the soil-plant system, human and animal health issues. Environment International, 2009, 35(3): 453–454
CrossRef Pubmed Google scholar
[33]
Liu R, Xu W, Wu K, Gong W, Liu H, Qu J. Species distribution of arsenic in sediments after an unexpected emergent discharge of high-arsenic wastewater into a river. Frontiers of Environmental Science & Engineering, 2013, 7(4): 568–578
CrossRef Google scholar
[34]
Sharma V K, Sohn M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 2009, 35(4): 743–759
CrossRef Pubmed Google scholar
[35]
Ronkart S N, Laurent V, Carbonnelle P, Mabon N, Copin A, Barthélemy J P. Speciation of five arsenic species (arsenite, arsenate, MMAAV, DMAAV and AsBet) in different kind of water by HPLC-ICP-MS. Chemosphere, 2007, 66(4): 738–745
CrossRef Pubmed Google scholar

Acknowledgements

This research was partially supported by the National Natural Science Foundation of China (Grant Nos. 51578205, 51538012, and 51728801), the Fundamental Research Funds for the Central Universities (No. JZ2016HGTB0722), and the Project of Science and Technology in Anhui Province (No. 1501041130).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11783-017-1004-9 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(313 KB)

Accesses

Citations

Detail

Sections
Recommended

/