Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure

Ping He , Guangxue Wu , Rui Tang , Peilun Ji , Shoujun Yuan , Wei Wang , Zhenhu Hu

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 9

PDF (313KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 9 DOI: 10.1007/s11783-017-1004-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure

Author information +
History +
PDF (313KB)

Abstract

The methanogenesis was severely inhibited with 0.46 mM ASA addition.

PO43 didn’t attenuate the methanogenesis inhibition in the existence of ASA.

ASA was transformed to As(III), As(V), MMA and DMA in anaerobic digestion.

Cu2+ mitigated the methanogenesis inhibition via impeding the degradation of ASA.

Arsanilic acid (ASA), copper ion (Cu2+) and phosphate (PO43) are widely used as feed additives for pigs. Most of these three supplemented feed additives were excreted in feces and urine. Anaerobic digestion is often used for the management of pig manure. However, the interaction of ASA with Cu2+ or PO43 on anaerobic digestion is still not clear. In this study, the influence of ASA, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure and the possible mechanisms were investigated. The initial concentrations of ASA, Cu2+ and PO43 were 0.46 mM, 2 mM and 2 mM in the anaerobic digester, respectively. The methanogenesis was severely inhibited in the assays with only ASA addition, only Cu2+ addition and ASA+ PO43 addition with the inhibition index of 97.8%, 46.6% and 82.6%, respectively, but the methanogenesis inhibition in the assay with ASA+ Cu2+ addition was mitigated with the inhibition index of 39.4%. PO43 had no obvious impacts on the degradation of ASA. However, Cu2+ addition inhibited the degradation of ASA, mitigating the methanogenesis inhibition. The existence of ASA would inhibit methanogenesis and generate more toxic inorganic arsenic compounds during anaerobic digestion, implying the limitation of anaerobic digestion for ASA- contaminated animal manure. However, the co-existence of ASA and Cu2+ could mitigate the inhibition. These results could provide useful information for the management of anaerobic digestion of pig manure containing ASA with Cu2+.

Graphical abstract

Keywords

Arsanilic acid (ASA) / Methanogenesis / Inhibition / Copper / Phosphate / Inorganic arsenics

Cite this article

Download citation ▾
Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure. Front. Environ. Sci. Eng., 2018, 12(2): 9 DOI:10.1007/s11783-017-1004-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mata-Alvarez JDosta JRomero-Güiza  M SFonoll XPeces MAstals S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable & Sustainable Energy Reviews201436: 412–427

[2]

Wu GHealy M GZhan X. Effect of the solid content on anaerobic digestion of meat and bone meal. Bioresource Technology2009100(19): 4326–4331

[3]

Ministry of Agriculture of the People’s Republic of China. Scheme for promoting the utilization of agricultural wastes. 2016. Available online at 160;(accessed August 11, 2016) (in Chinese)

[4]

Abbasi TTauseef S MAbbasi S A. Anaerobic digestion for global warming control and energy generation-An overview. Renewable & Sustainable Energy Reviews201216(5): 3228–3242

[5]

Xie S HLawlor P GFrost PDennehy C DHu Z HZhan X M. A pilot scale study on synergistic effects of co-digestion of pig manure and grass silage. International Biodeterioration & Biodegradation2017123: 244–250

[6]

Sutton A LBrumm M CKelly D THenderson C AMayrose V B. Effect of dietary salt, arsenic and copper additions and waste management systems on selected microbial organisms in swine wastes. Journal of Animal Science198051(4): 791–797

[7]

Liu XZhang WHu YCheng H. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC–ICP-MS. Microchemical Journal2013108(3): 38–45

[8]

Sierra-Alvarez RCortinas IField J A. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds. Journal of Hazardous Materials2010175(1–3): 352–358

[9]

Wang H LHu Z HTong Z LXu QWang WYuan S J. Effect of arsanilic acid on anaerobic methanogenic process: Kinetics, inhibition and biotransformation analysis. Biochemical Engineering Journal201491(91): 179–185

[10]

Sierra-Alvarez RCortinas IYenal UField J A. Methanogenic inhibition by arsenic compounds. Applied and Environmental Microbiology200470(9): 5688–5691

[11]

Shi LWang WYuan S JHu Z H. Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions. Environmental Science & Technology201448(14): 7951–7958

[12]

Shui M CJi FTang RYuan S JZhan X MWang WHu Z H. Impact of roxarsone on the UASB reactor performance and its degradation. Frontiers of Environmental Science & Engineering201610(6): 4

[13]

Stolz J FPerera EKilonzo BKail BCrable BFisher ERanganathan MWormer LBasu P.Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environmental Science & Technology200741(3): 818–823

[14]

Bikker PJongbloed A Wvan Baal J. Dose-dependent effects of copper supplementation of nursery diets on growth performance and fecal consistency in weaned pigs. Journal of Animal Science201694(S3): 181–186

[15]

Bolan N SKhan M ADonaldson JAdriano D CMatthew C. Distribution and bioavailability of copper in farm effluent. The Science of the Total Environment2003309(1–3): 225–236

[16]

Li Y XLi WWu JXu L CSu Q HXiong X. Contribution of additives Cu to its accumulation in pig feces: study in Beijing and Fuxin of China. Journal of Environmental Sciences-China200719(5): 610–615

[17]

Guo JOstermann ASiemens JDong RClemens J. Short term effects of copper, sulfadiazine and difloxacin on the anaerobic digestion of pig manure at low organic loading rates. Waste Management (New York, N.Y.)201232(1): 131–136

[18]

Boonsawang PRerngnarong ATongurai CChaiprapat S. Effect of nitrogen and phosphorus on the performance of acidogenic and methanogenic reactors for treatment of biodiesel wastewater. Songklanakarin Journal of Science and Technology201436(6): 643–649

[19]

Zayed GWinter J. Inhibition of methane production from whey by heavy metals--protective effect of sulfide. Applied Microbiology and Biotechnology200053(6): 726–731

[20]

Tang RChen HYuan S JZhan X MWang WHu Z H. Arsenic accumulation and volatilization in a 260-day cultured upflow anaerobic sludge blanket (UASB) reactor. Chemical Engineering Journal2017311: 277–283

[21]

Mahar R BSahito A RYue DKhan K. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator. Frontiers of Environmental Science & Engineering201610(1): 159–167

[22]

Mu YYu H QWang G. A kinetic approach to anaerobic hydrogen-producing process. Water Research200741(5): 1152–1160

[23]

Zwietering M HJongenburger IRombouts F Mvan ’t Riet K. Modeling of the bacterial growth curve. Applied and Environmental Microbiology199056(6): 1875–1881

[24]

Hu Z HYu H Q. Anaerobic digestion of cattail by rumen cultures. Waste Management (New York, N.Y.)200626(11): 1222–1228

[25]

Zhang F FWang WYuan S JHu Z H. Biodegradation and speciation of roxarsone in an anaerobic granular sludge system and its impacts. Journal of Hazardous Materials2014279(5): 562–568

[26]

Rosen B PAjees A AMcDermott T R. Life and death with arsenic. Bioessays201133(5): 350–357

[27]

Li W WYu H Q. From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: a future paradigm. Biotechnology Advances201129(6): 972–982

[28]

Mu YWang GYu H Q. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme and Microbial Technology200638(7): 905–913

[29]

Mu YYu H QWang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme and Microbial Technology200740(4): 947–953

[30]

Gonzalez-Estrella JPuyol DSierra-Alvarez RField J A. Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. Journal of Hazardous Materials2015283: 755–763

[31]

Zhang MHe Z PYuan HZhu LGuo C ZYin LWu JDeng S JYuan L YWen L X. DNA damage and decrease of cellular oxidase activity in piglet Sertoli cells exposed to arsanilic acid. The Journal of Veterinary Medical Science201173(2): 199–203

[32]

Kim K WBang SZhu YMeharg A ABhattacharya P. Arsenic geochemistry, transport mechanism in the soil-plant system, human and animal health issues. Environment International200935(3): 453–454

[33]

Liu RXu WWu KGong WLiu HQu J. Species distribution of arsenic in sediments after an unexpected emergent discharge of high-arsenic wastewater into a river. Frontiers of Environmental Science & Engineering20137(4): 568–578

[34]

Sharma V KSohn M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International200935(4): 743–759

[35]

Ronkart S NLaurent VCarbonnelle PMabon NCopin ABarthélemy J P. Speciation of five arsenic species (arsenite, arsenate, MMAAV, DMAAV and AsBet) in different kind of water by HPLC-ICP-MS. Chemosphere200766(4): 738–745

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (313KB)

Supplementary files

Supplementary Material 1

2193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/