Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification

Marika Benedetti , Lorenzo Cafiero , Doina De Angelis , Alessandro Dell’Era , Mauro Pasquali , Stefano Stendardo , Riccardo Tuffi , Stefano Vecchio Ciprioti

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 11

PDF (305KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 11 DOI: 10.1007/s11783-017-0998-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification

Author information +
History +
PDF (305KB)

Abstract

The effect of fly ash derived catalysts on pyrolysis of WEEE plastics was investigated.

A waste stream is recovered as a valuable resource for a new process.

Refused derived catalysts reduce the environmental impact and production costs.

Higher yields of light oil are obtained using fly ash derived catalysts.

Fly ash derived catalysts boost cracking effect and increase monoaromatics content in the oil.

Catalytic pyrolysis of thermoplastics extracted from waste electrical and electronic equipment (WEEE) was investigated using various fly ash-derived catalysts. The catalysts were prepared from fly ash by a simple method that basically includes a mechanical treatment followed by an acid or a basic activation. The synthesized catalysts were characterized using various analytical techniques. The results showed that not treated fly ash (FA) is characterized by good crystallinity, which in turn is lowered by mechanical and chemical treatment (fly ash after mechanical and acid activation, FAMA) and suppressed almost entirely down to let fly ash become completely amorphous (fly ash after mechanical and basic activation FAMB). Simultaneously, the surface area resulted increased. Subsequently, FA, FAMB and FAMA were used in the pyrolysis of a WEEE plastic sample at 400°C and their performance were compared with thermal pyrolysis at the same temperature. The catalysts principally improve the light oil yield: from 59wt.% with thermal pyrolysis to 83 wt.% using FAMB. The formation of styrene in the oil is also increased: from 243 mg/g with thermal pyrolysis to 453 mg/g using FAMB. As a result, FAMB proved to be the best catalyst, thus producing also the lowest and the highest amount of char and gas, respectively.

Graphical abstract

Keywords

Waste electrical and electronic equipment (WEEE) plastic mixture / Pyrolysis / Catalyst / Fly ash / Oil

Cite this article

Download citation ▾
Marika Benedetti, Lorenzo Cafiero, Doina De Angelis, Alessandro Dell’Era, Mauro Pasquali, Stefano Stendardo, Riccardo Tuffi, Stefano Vecchio Ciprioti. Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification. Front. Environ. Sci. Eng., 2017, 11(5): 11 DOI:10.1007/s11783-017-0998-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baldé C PWang FKuehr RHuisman J. The Global E-Waste Monitor – 2014. United Nations University, IAS – SCYCLE, Bonn, Germany2015

[2]

Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE)

[3]

Sodhi M SReimer B. Models for recycling electronics end-of-life products. OR-Spektrum200123(1): 97–115

[4]

Widmer ROswald-Krapf HSinha-Khetriwal DSchnellmann MBöni H. Global perspectives on e-waste. Environmental Impact Assessment Review200525(5): 436–458

[5]

Eurostat. 2014Waste electrical and electronic equipment (WEEE) by waste operations. Available online at 160;(accessed May 15, 2017)

[6]

Dimitrakakis EJanz ABilitewski BGidarakos E. Small WEEE: Determining recyclables and hazardous substances in plastics. Journal of Hazardous Materials2009161(2–3): 913–919

[7]

Panda A KSingh R KMishra D K. Thermolysis of waste plastics to liquid fuel A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable & Sustainable Energy Reviews201014(1): 233–248

[8]

Vasile CBrebu M AKarayildrim TYanik JDarie H. Feedstock recycling from plastic and thermoset fractions of used computer(I): Pyrolysis. Journal of Material Cycles and Waste Management20068(2): 99–108

[9]

He MXiao BLiu SHu ZGuo XLuo SYang F. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. Journal of Analytical and Applied Pyrolysis201087(2): 181–187

[10]

De Marco ICaballero BTorres ALaresgoiti M FChomòn M JCabrero M A. Recycling polymeric wastes by means of pyrolysis. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)200277(7): 817–824

[11]

Miandad RBarakat M AAburiazaiza A SRehan MNizami A S. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection2016102: 822–838

[12]

Al-Salem S MAntelava AConstantinou AManos GDutta A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management2017197: 177–198

[13]

Aguado JSerrano D PSan Miguel GCastro M CMadrid S. Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. Journal of Analytical and Applied Pyrolysis200779(1-2): 415–423

[14]

Park D WHwang E YKim J RChoi J KKim Y AWoo H C. Catalytic degradation of polyethylene over solid acid catalysts. Polymer Degradation & Stability199965(2): 193–198

[15]

Santella CCafiero LDe Angelis DLa Marca FTuffi RVecchio Ciprioti S. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE). Waste Management (New York, N.Y.)201654: 143–152

[16]

Ojha KPradhan N C. Treated fly ash: A potential catalyst for catalytic cracking. Indian Journal of Engineering and Materials Sciences20018(2): 100–103

[17]

Na J GJeong B HChung S HKim S S. Pyrolysis of low-density polyethylene using synthetic catalysts produced from fly ash. Journal of Material Cycles and Waste Management20068(2): 126–132

[18]

Wang S. Application of solid ash based catalysts in heterogeneous catalysis. Environmental Science & Technology200842(19): 7055–7063

[19]

Kim S SKim J HChung S H. A study on the application of fly ash-derived zeolite materials for pyrolysis of polypropylene. Journal of Industrial and Engineering Chemistry20039(3): 287–293

[20]

Cafiero LCastoldi ETuffi RVecchio Ciprioti S. Identification and characterization of plastics from small appliances and kinetic analysis of their thermally activated pyrolysis. Polymer Degradation & Stability2014109: 307–318

[21]

Cafiero LFabbri DTrinca ETuffi RVecchio Ciprioti S. Thermal and spectroscopic (TG/DCS-FTIR) characterization of mixed plastics for materials and energy recovery under pyrolytic conditions. Journal of Thermal Analysis and Calorimetry2015121(3): 1111–1119

[22]

Stendardo SFoscolo P UNobili MScaccia S. High quality syngas production via steam-oxygen blown bubbling fluidised bed gasifier. Energy201603(103): 697–708

[23]

Sharma ASrivastava KDevra VRani A. Modification in properties of fly ash through mechanical and chemical activation. American Chemical Sciences Journal20122(4): 177–187

[24]

Koehl GKeller NGarin FKeller V. A tool for direct quantitative measurement of surface Bronsted acid sites of solids by H/D exchange using D2O. Applied Catalysis A, General2005289(1): 37–43 

[25]

Hall W JWilliams P T. Fast pyrolysis of halogenated plastics recovered from waste computers. Energy & Fuels200620(4): 1536–1549

[26]

Miskolczi NHall W JAngyal ABartha LWilliams P T. Production of oil with low organobromine content from the pyrolysis of flame retarded HIPS and ABS plastics. Journal of Analytical and Applied Pyrolysis200883(1): 115–123

[27]

Sakata YUddin MMuto A. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Journal of Analytical and Applied Pyrolysis199951(1-2): 135–155

[28]

Caballero B Mde Marco IAdrados ALópez-Urionabarrenechea ASolar JGastelu N. Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants. Waste Management (New York, N.Y.)201657: 226–234

[29]

Giavarini C. Guida allo studio dei processi di raffinazione e petrolchimici. Roma: Siderea2006.

[30]

Audisio GBertini FBeltrame P LCarniti P. Catalytic degradation of polymers: Part III—Degradation of polystyrene. Polymer Degradation & Stability199029(2): 191–200

[31]

Zhang ZHirose TNishio SMorioka YAzuma NUeno AOhkita HOkada M. Chemical recycling of waste polystyrene acids and bases into styrene over solid acids and bases. Industrial & Engineering Chemistry Research199534(12): 4514–4519

[32]

Ukei HHirose THorikawa STakei YTaka MAzume NUeno A. Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catalysis Today200062(1): 67–75

[33]

Serrano D PAguado JEscola J M. Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2–Al2O3: Comparison with thermal cracking. Applied Catalysis B: Environmental200025(2–3): 181–189

[34]

Tae JJang BKim JKim IPark D. Catalytic degradation of polystyrene using acid-treated halloysite clays. Solid State Ionics2004172(1–4): 129–133

[35]

Guadagni A. Prontuario Dell’ingegnere. 3rd ed. Milano: Hoepli, 2010

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (305KB)

Supplementary files

FSE-17103-OF-BM_suppl_1

3019

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/