Comparison on End-of-Life strategies of WEEE in China based on LCA

Bin Lu, Xiaolong Song, Jianxin Yang, Dong Yang

PDF(490 KB)
PDF(490 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 7. DOI: 10.1007/s11783-017-0994-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparison on End-of-Life strategies of WEEE in China based on LCA

Author information +
History +

Highlights

Unit and Components Reuse are compared with materials recovery based LCA.

The obsolete refrigerator and Power Supply of computer are taken as the examples.

End-of-Life hierarchy is reasonable for the obsolete power supply of computer.

Reuse is not necessarily suitable for obsolete refrigerators.

The secondary lifespan of reused products/components is the key factor.

Abstract

As the Electrical and Electronic Equipment (EEE) are upgraded more frequently in China, a large quantity of Waste Electrical and Electronic Equipment (WEEE) was and will be generated. It becomes an urgent issue to develop and adopt an effective End-of-Life (EoL) strategy for EEE in order to balance the resource recovery and environmental impacts. In an EoL strategy hierarchy for EEE, reuse strategy is usually deemed to be prior to materials recovery and other strategies. But in practice, the advantages and disadvantages of different strategies are always context-dependent. Therefore, main EoL strategies for EEE in China need to be evaluated in environment and resources aspects from the life cycle perspective. In this study, the obsolete refrigerator and Power Supply Unit (PSU) of desktop PC are both taken as the target products. Life Cycle Assessment (LCA) is applied to assess the environmental impacts of different EoL scenarios in China: Unit Reuse Scenario (URS), Component Reuse Scenario (CRS) and Materials Recovery Scenario (MRS). The LCA results show that the EoL strategies hierarchy is reasonable for the part of computer, but not necessarily suitable for obsolete refrigerators. When the policy makers promote or demote one EoL strategy especially reuse, it is necessary to take subsequent impacts into consideration.

Graphical abstract

Keywords

End-of-Life / Waste electrical and electronic equipment / Life cycle assessment / Reuse

Cite this article

Download citation ▾
Bin Lu, Xiaolong Song, Jianxin Yang, Dong Yang. Comparison on End-of-Life strategies of WEEE in China based on LCA. Front. Environ. Sci. Eng., 2017, 11(5): 7 https://doi.org/10.1007/s11783-017-0994-7

References

[1]
Zeng X L, Gong R Y, Chen W Q, Li J H. Uncovering the recycling potential of “New” WEEE in China. Environmental Science & Technology, 2016, 50(3): 1347–1358
CrossRef Google scholar
[2]
Yu L, He W, Li G, Huang J, Zhu H. The development of WEEE management and effects of the fund policy for subsidizing WEEE treating in China. Waste Management (New York, N.Y.), 2014, 34(9): 1705–1714
CrossRef Google scholar
[3]
Li J, Zeng X, Chen M, Ogunseitan O A, Stevels A. “Control-Alt-Delete”: Rebooting solutions for the e-waste problem. Environmental Science & Technology, 2015, 49(12): 7095–7108
CrossRef Google scholar
[4]
Yang J, Lu B, Xu C. WEEE flow and mitigating measures in China. Waste Management (New York, N.Y.), 2008, 28(9): 1589–1597
CrossRef Google scholar
[5]
Chi X, Streicher-Porte M, Wang M Y L, Reuter M A. Informal electronic waste recycling: A sector review with special focus on China. Waste Management (New York, N.Y.), 2011, 31(4): 731–742
CrossRef Google scholar
[6]
Schmidt J H, Holm P, Merrild A, Christensen P. Life cycle assessment of the waste hierarchy —A Danish case study on waste paper. Waste Management (New York, N.Y.), 2007, 27(11): 1519–1530
CrossRef Google scholar
[7]
King A M, Burgess S C, Ijomah W, McMahon C A. Reducing waste: Repair, recondition, remanufacture or recycle? Sustainable Development, 2006, 14(4): 257–267
CrossRef Google scholar
[8]
Parajuly K, Wenzel H. Potential for circular economy in household WEEE management. Journal of Cleaner Production, 2017, 151: 272–285
CrossRef Google scholar
[9]
Bovea M D, Ibáñez-Forés V, Pérez-Belis V, Quemades-Beltrán P. Potential reuse of small household waste electrical and electronic equipment: Methodology and case study. Waste Management (New York, N.Y.), 2016, 53: 204–217
CrossRef Google scholar
[10]
Lindahl M, Sundin E, Östlin J. Environmental issues within remanufacturing industry. In: Proceedings of the 13th CIRP International conference on Life Cycle Engineering 2006, Leuven, Belguim. Leuven: ACCO, 2006, 447–452
[11]
Catherine M R, Stevels A. Metrics for end-of-life strategies (ELSEIM). In: Proceedings of the IEEE International Symposium on Electronics and the Environment 2001, Denver, USA. New York: IEEE, 2001, 101–105
[12]
Jofre S, Morioka T. Waste management of electric and electronic equipment: Comparative analysis of end-of-life strategies. Journal of Material Cycles and Waste Management, 2005, 7(1): 24–32
CrossRef Google scholar
[13]
Rose C M. Design for environment: A method for formulating product End-of-Life strategies. Dessertation for the Doctoral Degree. Stanford: Stanford University, 2000
[14]
Zink T, Maker F, Geyer R, Amirtharajah R, Akella V. Comparative life cycle assessment of smartphone reuse: Repurposing vs. refurbishment. International Journal of Life Cycle Assessment, 2014, 19(5): 1099–1109
CrossRef Google scholar
[15]
Schischke K, Kohlmeyer R, Griese H, Reichl H. Life cycle energy analysis of PCs – Environmental consequences of lifetime extension through reuse. In: Lausanne, Switzerland: Proceedings of the 11th SETAC LCA Case Studies Symposium. 2003, 1–4
[16]
Devoldere T, Willems B, Duflou J R, Dewulf W. The eco-efficiency of reuse centres critically explored—The washing machine case. International Journal of Sustainable Manufacturing, 2009, 1(3): 265–285
CrossRef Google scholar
[17]
Tomohiro T, Masaharu M, So S. Longer term use/reuse or replacement? An application of “Prescriptive” LCA to decision-making on electrical home appliances. In: Proceedings of the conference Electronics Goes Green 2008, Berlin, Germany. Berlin: Fraunhofer, 2008, 777–782
[18]
Goedkoop M, Spriensma R.The Eco-indicator 99: A damage oriented method for Life Cycle Impact Assessment. Amersfoort, Netherland: PRé Consultants, 2001.
[19]
Williams E, Kahhat R, Allenby B, Kavazanjian E, Kim J, Xu M. Environmental, social, and economic implications of global reuse and recycling of personal computers. Environmental Science & Technology, 2008, 42(17): 6446–6454
CrossRef Google scholar
[20]
Seebach P. Standards and specs: The ATX case and power supply. 2010. Available online at http://www.ibm.com/developerworks/power/library/pa-spec9.html (accessed April 26, 2015)
[21]
Yang J, Lu B. Rethinking of recycling and reuse options of obsolete personal computers in China. In: IEEE International Symposium on Electronics and the Environment 2008, San Francisco, USA. New York: IEEE, 2008, 1–5
[22]
Mike D. Beginners Guides: Most Common Ways to Kill a PC 2014. Available online at http://www.pcstats.com/articleview.cfm?articleID=1720 (accessed May 28, 2014)
[23]
Finnveden G, Johansson J, Lind P, Moberg A. Life cycle assessment of energy from solid waste–Part 1: General methodology and results. Journal of Cleaner Production, 2005, 13(3): 213–229
CrossRef Google scholar
[24]
Hellweg S, Milà i Canals L. Emerging approaches, challenges and opportunities in life cycle assessment. Science, 2014, 344(6188): 1109–1113
CrossRef Google scholar
[25]
Günther A, Langowski H C. Life cycle assessment study on resilient floor coverings. International Journal of Life Cycle Assessment, 1997, 2(2): 73–80
CrossRef Google scholar
[26]
Barba-Gutierrez Y, Adenso-Diaz B, Hopp M. An analysis of some environmental consequences of European electrical and electronic waste regulation. Resources, Conservation and Recycling, 2008, 52(3): 481–495
CrossRef Google scholar
[27]
Cooper T. Slower consumption: Reflections on product life spans and the “Throwaway Society”. Journal of Industrial Ecology, 2005, 9(1–2): 51–67
[28]
Liu X, Tanaka M, Matsui Y. Generation amount prediction and material flow analysis of electronic waste: A case study in Beijing, China. Waste Management & Research, 2006, 24(5): 434–445
CrossRef Google scholar
[29]
Jin Z, Liang W, Sui R.Discussion on Electronic Waste Output Estimation and Management Counter measures in Shenyang City. Environmental Sanitation engineering, 2006, 14(1): 21–24(in Chinese).
[30]
Li J, Tian B, Liu T, Liu H, Wen X, Honda S. Status quo of e-waste management in the mainland of China. Journal of Material Cycles and Waste Management, 2006, 8(1): 13–20 doi:10.1007/s10163-005-0144-3
[31]
Xu X. China Energy Statistical Yearbook 2014.Beijing: China Statistics Press, 2015
[32]
Stefan S, Felicitas S, Gudrun O. The ecological relevance of transport in waste disposal systems in Western Europe. Waste Management (New York, N.Y.), 2007, 27(11): 1519–1530
[33]
Tian H, He Y. Evaluation on recycling technologies of waste home applances in China and abroad. Home Appliances, 2009(7): 37–42 (in Chinese)
[34]
González X M, Rodríguez M, Pena-Boquete Y. The social benefits of WEEE re-use schemes. A cost benefit analysis for PCs in Spain. Waste Management (New York, N.Y.), 2017, 64: 202–213
CrossRef Google scholar

Acknowledgements

This study was supported by National Natural Science Foundation of China Key Program (No. 71533005) and Open Program of State Key Laboratory of Urban and Regional Ecology (SKLURE2017-2-1).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11783-017-0994-7 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(490 KB)

Accesses

Citations

Detail

Sections
Recommended

/