Preparing graphene from anode graphite of spent lithium-ion batteries

Wenxuan Zhang, Zhanpeng Liu, Jing Xia, Feng Li, Wenzhi He, Guangming Li, Juwen Huang

PDF(281 KB)
PDF(281 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 6. DOI: 10.1007/s11783-017-0993-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparing graphene from anode graphite of spent lithium-ion batteries

Author information +
History +

Highlights

Anode graphite was found to keep the original characteristics and configuration.

Some oxygen-containing groups were embedded into the structure of anode graphite.

Anode graphite were recycled by preparing graphene with oxidation-reduction method.

Preparing graphene with anode graphite consumed less concentrated H2SO4 and KMnO4.

Abstract

With extensive use of lithium ion batteries (LIBs), amounts of LIBs were discarded, giving rise to growth of resources demand and environmental risk. In view of wide usage of natural graphite and the high content (12%–21%) of anode graphite in spent LIBs, recycling anode graphite from spent LIBs cannot only alleviate the shortage of natural graphite, but also promote the sustainable development of related industries. After calcined at 600°Cfor 1 h to remove organic substances, anode graphite was used to prepare graphene by oxidation-reduction method. Effect of pH and N2H4·H2O amount on reduction of graphite oxide were probed. Structure of graphite, graphite oxide and graphene were characterized by XRD, Raman and FTIR. Graphite oxide could be completely reduced to graphene at pH 11 and 0.25 mL N2H4·H2O. Due to the presence of some oxygen-containing groups and structure defects in anode graphite, concentrated H2SO4 and KMnO4 consumptions were 40% and around 28.6% less than graphene preparation from natural graphite, respectively.

Graphical abstract

Keywords

Spent LIBs / Graphite / Graphite oxide / Grapheme

Cite this article

Download citation ▾
Wenxuan Zhang, Zhanpeng Liu, Jing Xia, Feng Li, Wenzhi He, Guangming Li, Juwen Huang. Preparing graphene from anode graphite of spent lithium-ion batteries. Front. Environ. Sci. Eng., 2017, 11(5): 6 https://doi.org/10.1007/s11783-017-0993-8

References

[1]
Suzuki T, Nakamura T, Inoue Y, Niinae M, Shibata J. A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Separation and Purification Technology, 2012, 98: 396–401
CrossRef Google scholar
[2]
Zou H, Gratz E, Apelian D, Wang Y. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry, 2013, 15(5): 1183
CrossRef Google scholar
[3]
Zeng X, Li J, Ren Y. Prediction of various discarded lithium batteries in China. IEEE International Symposium on Sustainable Systems and Technology, 2012
[4]
Li J, Wang G, Xu Z. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries. Waste Management (New York, N.Y.), 2016, 52: 221–227
CrossRef Pubmed Google scholar
[5]
Gratz E, Sa Q, Apelian D, Wang Y. A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 2014, 262: 255–262
CrossRef Google scholar
[6]
Ferreira D A, Prados L M Z, Majuste D, Mansur M B. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources, 2009, 187(1): 238–246
CrossRef Google scholar
[7]
He L P, Sun S Y, Song X F, Yu J G. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management (New York, N.Y.), 2015, 46: 523–528
CrossRef Pubmed Google scholar
[8]
Xin Y Y, Guo X M, Chen S, Wang J, Wu F, Xin B. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. Journal of Cleaner Production, 2016, 116: 249–258
CrossRef Google scholar
[9]
Wang X, Gaustad G, Babbitt C W. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Management (New York, N.Y.), 2016, 51: 204–213
CrossRef Pubmed Google scholar
[10]
Joo S H, Shin D J, Oh C H, Wang J P, Senanayake G, Shin S M. Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I. Hydrometallurgy, 2016, 159: 65–74
CrossRef Google scholar
[11]
Sun Z, Cao H, Xiao Y, Sietsma J, Jin W, Agterhuis H, Yang Y. Toward sustainability for recovery of critical metals from electronic waste: The hydrochemistry processes. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 21–40
CrossRef Google scholar
[12]
Zheng X, Gao W, Zhang X, He M, Lin X, Cao H, Zhang Y, Sun Z. Spent lithium-ion battery recycling—Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Management (New York, N.Y.), 2017, 60: 680–688
CrossRef Pubmed Google scholar
[13]
Moradi B, Botte G G. Recycling of graphite anodes for the next generation of lithium ion batteries. Journal of Applied Electrochemistry, 2016, 46(2): 123–148
CrossRef Google scholar
[14]
Sur U K, Saha A, Datta A, Ankamwar B, Surti F, Roy S D, Roy D. Synthesis and characterization of stable aqueous dispersions of graphene. Bulletin of Materials Science, 2016, 39(1): 159–165
CrossRef Google scholar
[15]
Singh C, Ali M A, Sumana G. Green synthesis of graphene based biomaterial using fenugreek seeds for lipid detection. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 871–880
CrossRef Google scholar
[16]
Du Y L, Lei X L, Zhang F L. Analysis on the development of graphite and recommended management strategies. China Mining Magazing, 2015, 24: 28–29 (in Chinese)
[17]
Gao T M, Chen Q S, Yu W J, Shen L. Projection of Chinas graphite demand and development prospects. Resources Science, 2015, 37(5): 1059–1067 (in Chinese)
[18]
Dao T D, Jeong H M. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene. Materials Research Bulletin, 2015, 70: 651–657
CrossRef Google scholar
[19]
Guo Y, Li F, Zhu H, Li G, Huang J, He W. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Management (New York, N.Y.), 2016, 51: 227–233
CrossRef Pubmed Google scholar
[20]
Roy I, Sarkar G, Mondal S, Rana D, Bhattacharyya A, Saha N R, Adhikari A, Khastgir D, Chattopadhyay S, Chattopadhyay D. Synthesis and characterization of graphene from waste dry cell battery for electronic applications. RSC Advances, 2016, 6(13): 10557–10564
CrossRef Google scholar
[21]
Yu H, Zhang B, Bulin C, Li R, Xing R. High-efficient synthesis of graphene oxide based on improved hummers method. Scientific Reports, 2016, 6(1): 36143
CrossRef Pubmed Google scholar
[22]
Wang R Y, Wu Z W, Qin Z F, Chen C, Zhu H, Wu J, Chen G, Fan W, Wang J. Graphene oxide: An effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene. Catalysis Science & Technology, 2016, 6(4): 993–997
CrossRef Google scholar
[23]
Yusof N S, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 2016, 29: 568–576
CrossRef Pubmed Google scholar
[24]
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S B T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565
CrossRef Google scholar
[25]
Rahimi R, Moshari M, Rabbani M, Azad A. Photooxidation of benzyl alcohols and photodegradation of cationic dyes by Fe3O4 sulfur/reduced graphene oxide as catalyst. RSC Advances, 2016, 6(47): 41156–41164
CrossRef Google scholar
[26]
QIAO H.Study on the structural transformation and electrical properties of products formed by the oxidation-reduction of graphite. Dissertation for Doctor’s Degree. Chongqing: Southwest Univerisity, 2012
[27]
Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3(2): 101–105
CrossRef Pubmed Google scholar
[28]
Soltani T, Lee B K. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium. Journal of Colloid and Interface Science, 2016, 481: 168–180
CrossRef Pubmed Google scholar

Acknowledgements

This work is supported by the Key Research Project of Science and Technology Commission of Shanghai Municipality (No. 12dz2294000). The authors would like to thank the anonymous reviewers for valuable comments.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(281 KB)

Accesses

Citations

Detail

Sections
Recommended

/