Preparing graphene from anode graphite of spent lithium-ion batteries

Wenxuan Zhang , Zhanpeng Liu , Jing Xia , Feng Li , Wenzhi He , Guangming Li , Juwen Huang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 6

PDF (281KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 6 DOI: 10.1007/s11783-017-0993-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparing graphene from anode graphite of spent lithium-ion batteries

Author information +
History +
PDF (281KB)

Abstract

Anode graphite was found to keep the original characteristics and configuration.

Some oxygen-containing groups were embedded into the structure of anode graphite.

Anode graphite were recycled by preparing graphene with oxidation-reduction method.

Preparing graphene with anode graphite consumed less concentrated H2SO4 and KMnO4.

With extensive use of lithium ion batteries (LIBs), amounts of LIBs were discarded, giving rise to growth of resources demand and environmental risk. In view of wide usage of natural graphite and the high content (12%–21%) of anode graphite in spent LIBs, recycling anode graphite from spent LIBs cannot only alleviate the shortage of natural graphite, but also promote the sustainable development of related industries. After calcined at 600°Cfor 1 h to remove organic substances, anode graphite was used to prepare graphene by oxidation-reduction method. Effect of pH and N2H4·H2O amount on reduction of graphite oxide were probed. Structure of graphite, graphite oxide and graphene were characterized by XRD, Raman and FTIR. Graphite oxide could be completely reduced to graphene at pH 11 and 0.25 mL N2H4·H2O. Due to the presence of some oxygen-containing groups and structure defects in anode graphite, concentrated H2SO4 and KMnO4 consumptions were 40% and around 28.6% less than graphene preparation from natural graphite, respectively.

Graphical abstract

Keywords

Spent LIBs / Graphite / Graphite oxide / Grapheme

Cite this article

Download citation ▾
Wenxuan Zhang, Zhanpeng Liu, Jing Xia, Feng Li, Wenzhi He, Guangming Li, Juwen Huang. Preparing graphene from anode graphite of spent lithium-ion batteries. Front. Environ. Sci. Eng., 2017, 11(5): 6 DOI:10.1007/s11783-017-0993-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Suzuki TNakamura TInoue YNiinae MShibata J. A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Separation and Purification Technology201298: 396–401

[2]

Zou HGratz EApelian DWang Y. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry201315(5): 1183

[3]

Zeng XLi JRen Y. Prediction of various discarded lithium batteries in China. IEEE International Symposium on Sustainable Systems and Technology2012

[4]

Li JWang GXu Z. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries. Waste Management (New York, N.Y.)201652: 221–227

[5]

Gratz ESa QApelian DWang Y. A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources2014262: 255–262

[6]

Ferreira D APrados L M ZMajuste DMansur M B. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources2009187(1): 238–246

[7]

He L PSun S YSong X FYu J G. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management (New York, N.Y.)201546: 523–528

[8]

Xin Y YGuo X MChen SWang JWu FXin B. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. Journal of Cleaner Production2016116: 249–258

[9]

Wang XGaustad GBabbitt C W. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Management (New York, N.Y.)201651: 204–213

[10]

Joo S HShin D JOh C HWang J PSenanayake GShin S M. Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I. Hydrometallurgy2016159: 65–74

[11]

Sun ZCao HXiao YSietsma JJin WAgterhuis HYang Y. Toward sustainability for recovery of critical metals from electronic waste: The hydrochemistry processes. ACS Sustainable Chemistry & Engineering20175(1): 21–40

[12]

Zheng XGao WZhang XHe MLin XCao HZhang YSun Z. Spent lithium-ion battery recycling—Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Management (New York, N.Y.)201760: 680–688

[13]

Moradi BBotte G G. Recycling of graphite anodes for the next generation of lithium ion batteries. Journal of Applied Electrochemistry201646(2): 123–148

[14]

Sur U KSaha ADatta AAnkamwar BSurti FRoy S DRoy D. Synthesis and characterization of stable aqueous dispersions of graphene. Bulletin of Materials Science201639(1): 159–165

[15]

Singh CAli M ASumana G. Green synthesis of graphene based biomaterial using fenugreek seeds for lipid detection. ACS Sustainable Chemistry & Engineering20164(3): 871–880

[16]

Du Y LLei X LZhang F L. Analysis on the development of graphite and recommended management strategies. China Mining Magazing201524: 28–29 (in Chinese)

[17]

Gao T MChen Q SYu W J, Shen L. Projection of Chinas graphite demand and development prospects. Resources Science201537(5): 1059–1067 (in Chinese)

[18]

Dao T DJeong H M. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene. Materials Research Bulletin201570: 651–657

[19]

Guo YLi FZhu HLi GHuang JHe W. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Management (New York, N.Y.)201651: 227–233

[20]

Roy ISarkar GMondal SRana DBhattacharyya ASaha N RAdhikari AKhastgir DChattopadhyay SChattopadhyay D. Synthesis and characterization of graphene from waste dry cell battery for electronic applications. RSC Advances20166(13): 10557–10564

[21]

Yu HZhang BBulin CLi RXing R. High-efficient synthesis of graphene oxide based on improved hummers method. Scientific Reports20166(1): 36143

[22]

Wang R YWu Z WQin Z FChen CZhu HWu JChen GFan WWang J. Graphene oxide: An effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene. Catalysis Science & Technology20166(4): 993–997

[23]

Yusof N SBabgi BAlghamdi YAksu MMadhavan JAshokkumar M. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry201629: 568–576

[24]

Stankovich SDikin D APiner R DKohlhaas K AKleinhammes AJia YWu YNguyen S B TRuoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon200745(7): 1558–1565

[25]

Rahimi RMoshari MRabbani MAzad A. Photooxidation of benzyl alcohols and photodegradation of cationic dyes by Fe3O4 sulfur/reduced graphene oxide as catalyst. RSC Advances20166(47): 41156–41164

[26]

QIAO H.Study on the structural transformation and electrical properties of products formed by the oxidation-reduction of graphite. Dissertation for Doctor’s Degree. Chongqing: Southwest Univerisity, 2012

[27]

Li DMüller M BGilje SKaner R BWallace G G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology20083(2): 101–105

[28]

Soltani TLee B K. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium. Journal of Colloid and Interface Science2016481: 168–180

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (281KB)

3656

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/