Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments

Bao Jiang , Dechun Su , Xiaoqing Wang , Jifang Liu , Yibing Ma

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 7

PDF (788KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 7 DOI: 10.1007/s11783-017-0990-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments

Author information +
History +
PDF (788KB)

Abstract

Long-term decrease in added Cu and Ni toxicity was easily identified in neutral soil.

Extractability as an aging indicator of Cu and Ni is better than phytotoxicity.

In neutral and alkaline soil Cu is extractable more than Ni.

In acidic soil extractability of Cu is similar to Ni.

The phytotoxicity of added copper (Cu) and nickel (Ni) is influenced by soil properties and field aging. However, the differences in the chemical behavior between Cu and Ni are still unclear. Therefore, this study was conducted to investigate the extractability of added Cu and Ni in 6-year field experiments, as well as the link with their phytotoxicity. The results showed that the extractability of added Cu decreased by 6.63% (5.10%–7.90%), 22.5% (20.6%–23.9%), and 6.87% (0%–17.9%) on average for acidic, neutral, and alkaline soil from 1 to 6 years, although the phytotoxicity of added Cu and Ni did not change significantly from 1 to 6 years in the long term field experiment. Because of dissolution of Cu, when the pH decreased below 7.0, the extractability of Cu in alkaline soil by EDTA at pH 4.0 could not reflect the effects of aging. For Ni, the extractability decreased by 18.1% (10.1%–33.0%), 63.0% (59.2%–68.8%), and 22.0% (12.4%–31.8%) from 1 to 6 years in acidic, neutral, and alkaline soils, respectively, indicating the effects of aging on Ni were greater than on Cu. The sum of ten sequential extractions of Cu and Ni showed that added Cu was more extractable than Ni in neutral and alkaline soil, but similar in acidic soil.

Graphical abstract

Keywords

Copper / Nickel / EDTA / Sequential extraction

Cite this article

Download citation ▾
Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma. Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments. Front. Environ. Sci. Eng., 2018, 12(2): 7 DOI:10.1007/s11783-017-0990-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo LMa YZhang SWei DZhu Y G. An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management200990(8): 2524–2530

[2]

Sarkar SSarkar BBasak B BMandal SBiswas BSrivastava P. Soil Mineralogical Perspective on Immobilization/Mobilization of Heavy Metals.Singapore: Springer Singapore, 2017

[3]

Sun Y BZhao DXu Y MWang LLiang X FShen X. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Frontiers of Environmental Science & Engineering201610(1): 85–92

[4]

Oorts KGhesquiere USmolders E. Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride. Environmental Toxicology and Chemistry200726(6): 1130–1138

[5]

Zhou S WXu M GMa Y BChen S BWei D P. Aging mechanism of copper added to bentonite. Geoderma2008147(1–2): 86–92

[6]

Zhang HZhu ZYoshikawa N. Microwave enhanced stabilization of copper in artificially contaminated soil. Frontiers of Environmental Science & Engineering20115(2): 205–211

[7]

Scheidegger A MSparks D LFendorf M. Mechanisms of nickel sorption on pyrophyllite: Macroscopic and microscopic approaches. Soil Science Society of America Journal199660(6): 1763–1772

[8]

Shi ZPeltier ESparks D L. Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation. Environmental Science & Technology201246(4): 2212–2219

[9]

Caporale A GViolante A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports20162(1): 15–27

[10]

Ma YLombi ENolan A LMcLaughlin M J. Short-term natural attenuation of copper in soils: Effects of time, temperature, and soil characteristics. Environmental Toxicology and Chemistry200625(3): 652–658

[11]

Ma YLombi EOliver I WNolan A LMcLaughlin M J. Long-term aging of copper added to soils. Environmental Science & Technology200640(20): 6310–6317

[12]

Ma YLombi EMcLaughlin M JOliver I WNolan A LOorts KSmolders E. Aging of nickel added to soils as predicted by soil pH and time. Chemosphere201392(8): 962–968

[13]

Hu PYang BDong CChen LCao XZhao JWu LLuo YChristie P. Assessment of EDTA heap leaching of an agricultural soil highly contaminated with heavy metals. Chemosphere2014117(1): 532–537

[14]

Chen HCutright T. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere200145(1): 21–28

[15]

Scheckel K GSparks D L. Dissolution kinetics of nickel surface precipitates on clay mineral and oxide surfaces. Soil Science Society of America Journal200165(3): 685–694

[16]

Zong YXiaoQLu S. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China). Environmental Science and Pollution Research International201623(14): 14600–14607

[17]

Cui HFan YFang GZhang HSu BZhou J. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment. Ecotoxicology and Environmental Safety2016134:148–155

[18]

Kim W SYoo J CJeon E KYang J SBaek K. Stepwise sequential extraction of As-, Cu-, and Pb-contaminated paddy soil. Clean- Soil, Air, Water201442(12): 1785–1789

[19]

Sun BZhao F JLombi EMcGrath S P. Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution2001113(2): 111–120

[20]

Tsang D CZhang WLo I M. Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils. Chemosphere200768(2): 234–243

[21]

Lock KJanssen C R. Influence of ageing on zinc bioavailability in soils. Environmental Pollution2003126(3): 371–374

[22]

Smolders EOorts KSprang P VSchoeters IJanssen C RMcGrath S PMcLaughlin M J. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environmental Toxicology and Chemistry200928(8): 1633–1642

[23]

Rayment G EHigginson F R. Australian Laboratory Handbook of Soil and Water Chemical Methods. Victoria, Australia: Inkata Press Pty Ltd, 1992

[24]

Matejovic I. Determination of carbon and nitrogen in samples of various soils by the dry combustion. Communications in Soil Science and Plant Analysis199728(17–18): 1499–1511

[25]

Sherrod L ADunn GPeterson G AKolberg R L. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Science Society of America Journal200266(1): 299–305

[26]

Mehra O PJackson M L. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Seventh National Conference on Clays and Clay Minerals19587(1): 317–327

[27]

Jackson M LLim C HZelazny L WKlute A. Oxides, Hydroxides, and Aluminosilicates. Agronomy Monograph1986: 101–150

[28]

Schwertmann U. Differenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat-lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde1964105(3): 194–202

[29]

McKeague J ADay J H. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science196646(1): 13–22

[30]

Zarcinas B AMcLaughlin M JSmart M K. The effect of acid digestion technique on the performance of nebulization systems used in inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis199627(5–8): 1331–1354

[31]

Haanstra LDoelman PVoshaar J H O. The use of sigmoidal dose response curves in soil ecotoxicological research. Plant and Soil198584(2): 293–297

[32]

Doelman PHaanstra L. Short- and long-term effects of heavy metals on phosphatase activity in soils: An ecological dose-response model approach. Biology and Fertility of Soils19898(3): 235–241

[33]

Li BMa YMcLaughlin M JKirby J KCozens GLiu J. Influences of soil properties and leaching on copper toxicity to barley root elongation. Environmental Toxicology and Chemistry201029(4): 835–842

[34]

Li BZhang HMa YMcLaughlin M J. Relationships between soil properties and toxicity of copper and nickel to bok choy and tomato in Chinese soils. Environmental Toxicology and Chemistry201332(10): 2372–2378

[35]

McBride M BCai M. Copper and zinc aging in soils for a decade: Changes in metal extractability and phytotoxicity. Environmental Chemistry201613(1): 160–167

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (788KB)

2658

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/