Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution

Wenchao Jiang , Ping Tang , Shuguang Lu , Xiang Zhang , Zhaofu Qiu , Qian Sui

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 6

PDF (695KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 6 DOI: 10.1007/s11783-017-0987-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution

Author information +
History +
PDF (695KB)

Abstract

Complete CT degradation was achieved by SPC/Fe(II)/FA system.

Formic acid established the reductive circumstance by producing CO2·.

CO2· was the dominant active species responsible for CT degradation.

CT degradation was favorable in the pH range from 3.0 to 9.0.

SPC/Fe(II)/FA system may be suitable for CT remediation in contaminated groundwater.

The performance of sodium percarbonate (SPC) activated with ferrous ion (Fe(II)) with the addition of formic acid (FA) to stimulate the degradation of carbon tetrachloride (CT) was investigated. Results showed that CT could be entirely reduced within 15 min in the system at a variety of SPC/Fe(II)/FA/CT molar ratios in experimental level. Scavenging tests indicated that carbon dioxide radical anion (CO2·) was the dominant reactive oxygen species responsible for CT degradation. CT degradation rate, to a large extent, increased with increasing dosages of chemical agents and the optimal molar ratio of SPC/Fe(II)/FA/CT was set as 60/60/60/1. The initial concentration of CT can hardly affect the CT removal, while CT degradation was favorable in the pH range of 3.0–9.0, but apparently inhibited at pH 12. Cl and HCO3 of high concentration showed negative impact on CT removal. Cl released from CT was detected and the results confirmed nearly complete mineralization of CT. CT degradation was proposed by reductive C-Cl bond splitting. This study demonstrated that SPC activated with Fe(II) with the addition of FA may be promising technique for CT remediation in contaminated groundwater.

Graphical abstract

Keywords

Carbon tetrachloride / Sodium percarbonate / Formic acid / Reductive radicals / Groundwater

Cite this article

Download citation ▾
Wenchao Jiang, Ping Tang, Shuguang Lu, Xiang Zhang, Zhaofu Qiu, Qian Sui. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution. Front. Environ. Sci. Eng., 2018, 12(2): 6 DOI:10.1007/s11783-017-0987-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mercier MLans Mde Gerlache J. Mutagenicity, carcinogenicity, and teratogenicity of halogenated hydrocarbon solvents. In: Kirsch-Volders M, eds. Mutagenicity, Carcinogenicity, and Teratogenicity of Industrial Pollutants. Boston: Springer1984, 281–324

[2]

Semprini L. In situ bioremediation of chlorinated solvents. Environmental Health Perspectives1995103(Suppl 5): 101–105

[3]

Lin Y TLiang C. Carbon tetrachloride degradation by alkaline ascorbic acid solution. Environmental Science & Technology201347(7): 3299–3307

[4]

Fischer J RSweeny K H. US Patent, 3 640 821, 1972–02–08

[5]

Wolfe N LMacalady D L. New perspectives in aquatic redox chemistry: abiotic transformations of pollutants in groundwater and sediments. Journal of Contaminant Hydrology19929(1–2): 17–34 doi:10.1016/0169-7722(92)90048-J

[6]

Alvarado J SRose CLafreniere L. Degradation of carbon tetrachloride in the presence of zero-valent iron. Journal of Environmental Monitoring201012(8): 1524–1530

[7]

Kostka J ENealson K H. Dissolution and reduction of magnetite by bacteria. Environmental Science & Technology199529(10): 2535–2540

[8]

Buxton G VGreenstock C LHelman W PRoss A B. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. Journal of Physical and Chemical Reference Data198817(2): 513–886

[9]

Gara PBucharsky EWorner M AMartire DGonzalez M C. Trichloroacetic acid dehalogenation by reductive radicals. Inorganica Chimica Acta2007360(3): 1209–1216

[10]

Gonzalez M CLe Roux G CRosso J ABraun A M. Mineralization of CCl4 by the UVC-photolysis of hydrogen peroxide in the presence of methanol. Chemosphere200769(8): 1238–1244

[11]

Xu MGu XLu SMiao ZZang XWu XQiu ZSui Q. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid. Frontiers of Environmental Science & Engineering201610(3): 438–446

[12]

Walling C. Fenton’s reagent revisited. Accounts of Chemical Research19758(4): 125–131

[13]

Bendicho CCalle IPena FCostas MCabaleiro NLavilla I. Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry. Trends in Analytical Chemistry201243(8): 50–60

[14]

Miao ZGu XLu SZang XWu XXu MNdong L BQiu ZSui QFu G Y. Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism. Chemosphere2015119: 1120–1125

[15]

Fu XGu XLu SMiao ZXu MZhang XQiu ZSui Q. Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution. Chemical Engineering Journal2015267: 25–33

[16]

Tamura HGoto KYotsuyanagi TNagayama M. Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta197421(4): 314–318

[17]

Cohen I RPurcell T CAltshuller A P. Analysis of the oxidant in photooxidation reactions. Environmental Science & Technology19671(3): 247–252

[18]

Legrini OOliveros EBraun A M. Photochemical processes for water treatment. Chemical Reviews199393(2): 671–698

[19]

Rosso J ABertolotti S GBraun A MMártire D OGonzalez M C. Reactions of carbon dioxide radical anion with substituted benzenes. Journal of Physical Organic Chemistry200114(5): 300–309

[20]

Hayon ESimic M. Acid-base properties of organic peroxy radicals, ·OORH, in aqueous solution. Journal of the American Chemical Society197395(20): 6681–6684

[21]

Teel A LWatts R J. Degradation of carbon tetrachloride by modified Fenton’s reagent. Journal of Hazardous Materials200294(2): 179–189

[22]

Tachikawa TTojo SFujitsuka MMajima T. Direct observation of the one-electron reduction of methyl viologen mediated by the CO2 radical anion during TiO2 photocatalytic reactions. Langmuir200420(22): 9441–9444

[23]

Yap C LGan SNg H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere201183(11): 1414–1430

[24]

Stuglik ZPawełzagórski Z. Pulse radiolysis of neutral iron(II) solutions: oxidation of ferrous ions by OH radicals. Radiation Physics and Chemistry198117(4): 229–233

[25]

Aristova N ALeitner N K VPiskarev I M. Degradation of formic acid in different oxidative processes. High Energy Chemistry200236(3): 197–202

[26]

Morkovnik A FOkhlobystin O Y. Inorganic radical-ions and their organic reactions. Russian Chemical Reviews197948(11): 1055–1075

[27]

Connor H DThurman R GGalizi M DMason R P. The formation of a novel free radical metabolite from CCl4 in the perfused rat liver and in vivo. Journal of Biological Chemistry1986261(10): 4542–4548

[28]

Yu X YBarker J R. Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism. Journal of Physical Chemistry A2003107(9): 1313–1324

[29]

Hasegawa KNeta P. Rate constants and mechanisms of reaction of chloride (·Cl2) radicals. Journal of Physical Chemistry197882(8): 54–857

[30]

Wu CLinden K G. Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicals. Water Research201044(12): 3585–3594

[31]

Zhang XGu XLu SMiao ZXu MFu XQiu ZSui Q. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. Journal of Hazardous Materials2015284: 253–260

[32]

Jeffers P MWard L MWoytowitch L MWolfe N L. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes. Environmental Science & Technology198923(8): 965–969

[33]

Kriegman-King M RReinhard M. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environmental Science & Technology199428(4): 692–700

[34]

Amonette J EWorkman D JKennedy D WFruchter J SGorby Y A. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environmental Science & Technology200034(21): 4606–4613

[35]

DanielsenK MHayesK F. pH dependence of carbon tetrachloride reductive dechlorination by magnetite.Environmental Science & Technology200438(18): 4745–4752 

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (695KB)

2600

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/