Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution

Wenchao Jiang, Ping Tang, Shuguang Lu, Xiang Zhang, Zhaofu Qiu, Qian Sui

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 6.

PDF(695 KB)
PDF(695 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 6. DOI: 10.1007/s11783-017-0987-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution

Author information +
History +

Highlights

Complete CT degradation was achieved by SPC/Fe(II)/FA system.

Formic acid established the reductive circumstance by producing CO2·.

CO2· was the dominant active species responsible for CT degradation.

CT degradation was favorable in the pH range from 3.0 to 9.0.

SPC/Fe(II)/FA system may be suitable for CT remediation in contaminated groundwater.

Abstract

The performance of sodium percarbonate (SPC) activated with ferrous ion (Fe(II)) with the addition of formic acid (FA) to stimulate the degradation of carbon tetrachloride (CT) was investigated. Results showed that CT could be entirely reduced within 15 min in the system at a variety of SPC/Fe(II)/FA/CT molar ratios in experimental level. Scavenging tests indicated that carbon dioxide radical anion (CO2·) was the dominant reactive oxygen species responsible for CT degradation. CT degradation rate, to a large extent, increased with increasing dosages of chemical agents and the optimal molar ratio of SPC/Fe(II)/FA/CT was set as 60/60/60/1. The initial concentration of CT can hardly affect the CT removal, while CT degradation was favorable in the pH range of 3.0–9.0, but apparently inhibited at pH 12. Cl and HCO3 of high concentration showed negative impact on CT removal. Cl released from CT was detected and the results confirmed nearly complete mineralization of CT. CT degradation was proposed by reductive C-Cl bond splitting. This study demonstrated that SPC activated with Fe(II) with the addition of FA may be promising technique for CT remediation in contaminated groundwater.

Graphical abstract

Keywords

Carbon tetrachloride / Sodium percarbonate / Formic acid / Reductive radicals / Groundwater

Cite this article

Download citation ▾
Wenchao Jiang, Ping Tang, Shuguang Lu, Xiang Zhang, Zhaofu Qiu, Qian Sui. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/ Fe(II)/formic acid system in aqueous solution. Front. Environ. Sci. Eng., 2018, 12(2): 6 https://doi.org/10.1007/s11783-017-0987-6

References

[1]
Mercier M, Lans M, de Gerlache J. Mutagenicity, carcinogenicity, and teratogenicity of halogenated hydrocarbon solvents. In: Kirsch-Volders M, eds. Mutagenicity, Carcinogenicity, and Teratogenicity of Industrial Pollutants. Boston: Springer, 1984, 281–324
[2]
Semprini L. In situ bioremediation of chlorinated solvents. Environmental Health Perspectives, 1995, 103(Suppl 5): 101–105
CrossRef Pubmed Google scholar
[3]
Lin Y T, Liang C. Carbon tetrachloride degradation by alkaline ascorbic acid solution. Environmental Science & Technology, 2013, 47(7): 3299–3307
CrossRef Pubmed Google scholar
[4]
Fischer J R, Sweeny K H. US Patent, 3 640 821, 1972–02–08
[5]
Wolfe N L, Macalady D L. New perspectives in aquatic redox chemistry: abiotic transformations of pollutants in groundwater and sediments. Journal of Contaminant Hydrology, 1992, 9(1–2): 17–34 doi:10.1016/0169-7722(92)90048-J
[6]
Alvarado J S, Rose C, Lafreniere L. Degradation of carbon tetrachloride in the presence of zero-valent iron. Journal of Environmental Monitoring, 2010, 12(8): 1524–1530
CrossRef Pubmed Google scholar
[7]
Kostka J E, Nealson K H. Dissolution and reduction of magnetite by bacteria. Environmental Science & Technology, 1995, 29(10): 2535–2540
CrossRef Pubmed Google scholar
[8]
Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513–886
CrossRef Google scholar
[9]
Gara P, Bucharsky E, Worner M A, Martire D, Gonzalez M C. Trichloroacetic acid dehalogenation by reductive radicals. Inorganica Chimica Acta, 2007, 360(3): 1209–1216
CrossRef Google scholar
[10]
Gonzalez M C, Le Roux G C, Rosso J A, Braun A M. Mineralization of CCl4 by the UVC-photolysis of hydrogen peroxide in the presence of methanol. Chemosphere, 2007, 69(8): 1238–1244
CrossRef Pubmed Google scholar
[11]
Xu M, Gu X, Lu S, Miao Z, Zang X, Wu X, Qiu Z, Sui Q. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid. Frontiers of Environmental Science & Engineering, 2016, 10(3): 438–446
CrossRef Google scholar
[12]
Walling C. Fenton’s reagent revisited. Accounts of Chemical Research, 1975, 8(4): 125–131
CrossRef Google scholar
[13]
Bendicho C, Calle I, Pena F, Costas M, Cabaleiro N, Lavilla I. Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry. Trends in Analytical Chemistry, 2012, 43(8): 50–60
CrossRef Google scholar
[14]
Miao Z, Gu X, Lu S, Zang X, Wu X, Xu M, Ndong L B, Qiu Z, Sui Q, Fu G Y. Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism. Chemosphere, 2015, 119: 1120–1125
CrossRef Pubmed Google scholar
[15]
Fu X, Gu X, Lu S, Miao Z, Xu M, Zhang X, Qiu Z, Sui Q. Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution. Chemical Engineering Journal, 2015, 267: 25–33
CrossRef Google scholar
[16]
Tamura H, Goto K, Yotsuyanagi T, Nagayama M. Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta, 1974, 21(4): 314–318
CrossRef Pubmed Google scholar
[17]
Cohen I R, Purcell T C, Altshuller A P. Analysis of the oxidant in photooxidation reactions. Environmental Science & Technology, 1967, 1(3): 247–252
CrossRef Google scholar
[18]
Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment. Chemical Reviews, 1993, 93(2): 671–698
CrossRef Google scholar
[19]
Rosso J A, Bertolotti S G, Braun A M, Mártire D O, Gonzalez M C. Reactions of carbon dioxide radical anion with substituted benzenes. Journal of Physical Organic Chemistry, 2001, 14(5): 300–309
CrossRef Google scholar
[20]
Hayon E, Simic M. Acid-base properties of organic peroxy radicals, ·OORH, in aqueous solution. Journal of the American Chemical Society, 1973, 95(20): 6681–6684
CrossRef Google scholar
[21]
Teel A L, Watts R J. Degradation of carbon tetrachloride by modified Fenton’s reagent. Journal of Hazardous Materials, 2002, 94(2): 179–189
CrossRef Pubmed Google scholar
[22]
Tachikawa T, Tojo S, Fujitsuka M, Majima T. Direct observation of the one-electron reduction of methyl viologen mediated by the CO2 radical anion during TiO2 photocatalytic reactions. Langmuir, 2004, 20(22): 9441–9444
CrossRef Pubmed Google scholar
[23]
Yap C L, Gan S, Ng H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere, 2011, 83(11): 1414–1430
CrossRef Pubmed Google scholar
[24]
Stuglik Z, Pawełzagórski Z. Pulse radiolysis of neutral iron(II) solutions: oxidation of ferrous ions by OH radicals. Radiation Physics and Chemistry, 1981, 17(4): 229–233
[25]
Aristova N A, Leitner N K V, Piskarev I M. Degradation of formic acid in different oxidative processes. High Energy Chemistry, 2002, 36(3): 197–202
CrossRef Google scholar
[26]
Morkovnik A F, Okhlobystin O Y. Inorganic radical-ions and their organic reactions. Russian Chemical Reviews, 1979, 48(11): 1055–1075
CrossRef Google scholar
[27]
Connor H D, Thurman R G, Galizi M D, Mason R P. The formation of a novel free radical metabolite from CCl4 in the perfused rat liver and in vivo. Journal of Biological Chemistry, 1986, 261(10): 4542–4548
Pubmed
[28]
Yu X Y, Barker J R. Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism. Journal of Physical Chemistry A, 2003, 107(9): 1313–1324
CrossRef Google scholar
[29]
Hasegawa K, Neta P. Rate constants and mechanisms of reaction of chloride (·Cl2) radicals. Journal of Physical Chemistry, 1978, 82(8): 54–857
CrossRef Google scholar
[30]
Wu C, Linden K G. Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicals. Water Research, 2010, 44(12): 3585–3594
CrossRef Pubmed Google scholar
[31]
Zhang X, Gu X, Lu S, Miao Z, Xu M, Fu X, Qiu Z, Sui Q. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. Journal of Hazardous Materials, 2015, 284: 253–260
CrossRef Pubmed Google scholar
[32]
Jeffers P M, Ward L M, Woytowitch L M, Wolfe N L. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes. Environmental Science & Technology, 1989, 23(8): 965–969
CrossRef Google scholar
[33]
Kriegman-King M R, Reinhard M. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environmental Science & Technology, 1994, 28(4): 692–700
CrossRef Pubmed Google scholar
[34]
Amonette J E, Workman D J, Kennedy D W, Fruchter J S, Gorby Y A. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environmental Science & Technology, 2000, 34(21): 4606–4613
CrossRef Google scholar
[35]
DanielsenK M, HayesK F. pH dependence of carbon tetrachloride reductive dechlorination by magnetite.Environmental Science & Technology, 2004, 38(18): 4745–4752 
CrossRef Pubmed Google scholar

Acknowledgements

This study was financially supported by the grant from the National Natural Science Foundation of China (Grant Nos. 41373094, 21577033, and 51208199) and Natural Science Foundation of Shanghai (No. 16ZR1407200).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer–Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(695 KB)

Accesses

Citations

Detail

Sections
Recommended

/