Transport of antibiotic resistance plasmids in porous media and the influence of surfactants

Peipei Chen , Chaoqi Chen , Xiqing Li

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 5

PDF (1347KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 5 DOI: 10.1007/s11783-017-0986-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Transport of antibiotic resistance plasmids in porous media and the influence of surfactants

Author information +
History +
PDF (1347KB)

Abstract

Indigenous and engineered plasmids have similar transport behavior in porous media.

Indigenous plasmid pK5 transports similarly in quartz sand and soil.

Anionic surfactant SDS has negligible effect on plasmid transport in porous media.

Cationic surfactant CTAB affects plasmid transport at high concentrations.

Indigenous plasmids may transport over significant distances in environment.

Transport of engineered antibiotic resistance plasmids in porous media has been reported to potentially cause significant spreading of antibiotic resistance in the environment. In this work, transport of an indigenous resistance plasmid pK5 in porous media was investigated through packed column experiments. At identical ionic strengths in CaCl2 solutions, the breakthroughs of pK5 from soil columns were very close to those from quartz sand columns, indicating that transport of pK5 in quartz sand and soil was similar. A similarity in transport behavior was also found between pK5 and an engineered plasmid pBR322 that has approximately the same number of base pairs as pK5. The influence of surfactants, a major group of constituents in soil solutions, was examined using an engineered plasmid pcDNA3.1(+)/myc-His A. The impact of an anionic surfactant, sodium dodecyl sulfate (SDS), was negligible at concentrations up to 200 mg·L1. Cetyltrimethyl ammonium bromide (CTAB), a cationic surfactant, was found to significantly enhance plasmid adsorption at high concentrations. However, at environmentally relevant concentrations (<1 mg·L1), the effect of this surfactant was also minimal. The negligible impact of surfactants and the similarity between the transport of engineered and indigenous plasmids indicate that under environmentally relevant conditions, indigenous plasmids in soil also have the potential to transport over long distances and lead to the spreading of antibiotic resistance.

Graphical abstract

Keywords

Indigenous plasmid / Transport / Porous media / Surfactants

Cite this article

Download citation ▾
Peipei Chen, Chaoqi Chen, Xiqing Li. Transport of antibiotic resistance plasmids in porous media and the influence of surfactants. Front. Environ. Sci. Eng., 2018, 12(2): 5 DOI:10.1007/s11783-017-0986-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chee-Sanford J CMackie R IKoike SKrapac I GLin Y FYannarell A CMaxwell SAminov R I. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality200938(3): 1086–1108

[2]

Gielen G J H PHeuvel M RClinton P WGreenfield L G. Factors impacting on pharmaceutical leaching following sewage application to land. Chemosphere200974(4): 537–542

[3]

Gatica JCytryn E. Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. Environmental Science and Pollution Research International201320(6): 3529–3538

[4]

Marti RScott ATien Y CMurray RSabourin LZhang YTopp E. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied and Environmental Microbiology201379(18): 5701–5709

[5]

Finley R LCollignon PLarsson D GMcEwen S ALi X ZGaze W HReid-Smith RTiminouni MGraham D WTopp E. The scourge of antibiotic resistance: the important role of the environment. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America201357(5): 704–710

[6]

Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science1994264(5157): 375–382

[7]

Heuer HSmalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiology Reviews201236(6): 1083–1104

[8]

Davison J. Genetic exchange between bacteria in the environment. Plasmid199942(2): 73–91

[9]

Backert SMeyer T F. Type IV secretion systems and their effectors in bacterial pathogenesis. Current Opinion in Microbiology20069(2): 207–217

[10]

Levy-Booth D JCampbell R GGulden R HHart M MPowell J RKlironomos J NPauls K PSwanton C JTrevors J TDunfield K E. Cycling of extracellular DNA in the soil environment. Soil Biology & Biochemistry200739(12): 2977–2991

[11]

Cai PHuang Q YZhang X W. Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase. Environmental Science & Technology200640(9): 2971–2976

[12]

Ogram ASayler G SGustin DLewis R J. DNA adsorption to soils and sediments. Environmental Science & Technology198822(8): 982–984

[13]

Pietramellara GFranchi MGallori ENannipieri P. Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite. Biology and Fertility of Soils200133(5): 402–409

[14]

Poté JCeccherini M TVan V TRosselli WWildi WSimonet PVogel T M. Fate and transport of antibiotic resistance genes in saturated soil columns. European Journal of Soil Biology200339(2): 65–71

[15]

Poté JTeresa Ceccherini MRosselli WWildi WSimonet PVogel T M. Leaching and transformability of transgenic DNA in unsaturated soil columns. Ecotoxicology and Environmental Safety201073(1): 67–72

[16]

Rysz MAlvarez P J J. Transport of antibiotic-resistant bacteria and resistance-carrying plasmids through porous media. Water Science and Technology: A Journal of the International Association on Water Pollution Research200654(11): 363–370

[17]

Chen CLi JDeVries S LZhang PLi X. Transport of antibiotic resistance plasmids in porous media. Vadose Zone Journal201514(3): 

[18]

del Valle MAlonso JBartrolí JMartí I. Spectrophotometric determination of low levels of anionic surfactants in water by solvent extraction in a flow injection system. Analyst (London)1988113(11): 1677–1681

[19]

Corada-Fernández CJiménez-Martínez JCandela LGonzález-Mazo ELara-Martín P A. Occurrence and spatial distribution of emerging contaminants in the unsaturated zone. Case study: Guadalete River Basin (Cadiz, Spain). Chemosphere2015119(S): S131–S137

[20]

Mungray A KKumar P. Anionic surfactants in treated sewage and sludges: risk assessment to aquatic and terrestrial environments. Bioresource Technology200899(8): 2919–2929

[21]

Cantarero SPrieto C ALópez I. Occurrence of high-tonnage anionic surfactants in Spanish sewage sludge. Journal of Environmental Management201295(S): S149–S153

[22]

Eskilsson KLeal CLindman BMiguel MNylander T. DNA-surfactant complexes at solid surfaces. Langmuir200117(5): 1666–1669

[23]

Braem A DCampos-Terán JLindman B. Influence of DNA adsorption and DNA/cationic surfactant coadsorption on the interaction forces between hydrophobic surfaces. Langmuir200420(15): 6407–6413

[24]

Cárdenas MBraem ANylander TLindman B. DNA compaction at hydrophobic surfaces induced by a cationic amphiphile. Langmuir200319(19): 7712–7718

[25]

Cárdenas MWacklin HCampbell R ANylander T. Structure of DNA-cationic surfactant complexes at hydrophobically modified and hydrophilic silica surfaces as revealed by neutron reflectometry. Langmuir201127(20): 12506–12514

[26]

Adamczyk ZSiwek BZembala MWeronski P. Kinetics of localized adsorption of colloid particles. Langmuir19928(11): 2605–2610

[27]

Adamczyk ZBarbasz JCieśla M. Mechanisms of fibrinogen adsorption at solid substrates. Langmuir201127(11): 6868–6878

[28]

Xie YLi SWu KWang JLiu G. A hybrid adsorption/ultrafiltration process for perchlorate removal. Journal of Membrane Science2011366(1–2): 237–244

[29]

Elimelech MO’Melia C R. Kinetics of deposition of colloidal particles in porous media. Environmental Science & Technology199024(10): 1528–1536

[30]

Yee NFein J BDaughney C J. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochimica et Cosmochimica Acta200064(4): 609–617

[31]

Edmeades D CWheeler D MClinton O E. The chemical-composition and ionic-strength of soil solutions from New Zealand topsoils. Australian Journal of Soil Research198523(2): 151–165

[32]

Olkowska ERuman MKowalska APolkowska Ż. Determination of surfactants in environmental samples. Part I. Cationic compounds. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S201320(1): 69–77

[33]

Samardžić MGalović OPetrušić SSak-Bosnar M. The analysis of anionic surfactants in effluents using a DDA-TPB potentiometric sensor. International Journal of Electrochemical Science20149(11): 6166–6181

[34]

Lara-Martín P AGómez-Parra AGonzález-Mazo E. Simultaneous extraction and determination of anionic surfactants in waters and sediments. Journal of Chromatography. A20061114(2): 205–210

[35]

Olkowska ERuman MKowalska APolkowska Ż. Determination of surfactants in environmental samples. Part II. Anionic compounds. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S201320(2): 331–342

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1347KB)

3684

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/