Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure

Dongliang Du , Chuanyi Zhang , Kuixia Zhao , Guangrong Sun , Siqi Zou , Limei Yuan , Shilong He

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 4

PDF (567KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 4 DOI: 10.1007/s11783-017-0981-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure

Author information +
History +
PDF (567KB)

Abstract

The nutrient removal was higeher with short-chain fatty acids as carbon source.

Candidatus Accumulibacter was more easily enriched in A2N-MBR process.

Short-chain fatty acids were beneficial to the growth of PAOs.

Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4+-N, TN and TP were lower than 30, 5, 15 and 0.5 mg·L-1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg·L-1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth ofCandidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate theCandidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.

Graphical abstract

Keywords

Denitrifying phosphorus removal / Alternate anaerobic/anoxic-aerobic MBR (A 2N-MBR) / Carbon source / Operation characteristic / Community structure

Cite this article

Download citation ▾
Dongliang Du, Chuanyi Zhang, Kuixia Zhao, Guangrong Sun, Siqi Zou, Limei Yuan, Shilong He. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure. Front. Environ. Sci. Eng., 2018, 12(2): 4 DOI:10.1007/s11783-017-0981-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu RWu  MYang J . Effect of sludge retention time and phosphorus to carbon ratio on biological phosphorus removal in HS-SBR process. Environmental Technology201334(1-4): 429–435

[2]

Jin LZhang  GTian H . Current state of sewage treatment in China. Water Research201466: 85–98

[3]

Carvalheira MOehmen  ACarvalho G Reis M A . The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). Water Research201464: 149–159

[4]

Tsuneda SOhno  TSoejima K Hirata A . Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochemical Engineering Journal200627(3): 191–196

[5]

Bortone GLibelli  S MTilche  AWanner J . Anoxic phosphate uptake in the DEPHANOX process. Water Science and Technology199940(4–5): 177–185

[6]

Kuba T M C M Van Loosdrecht M C M Heijnen J J . Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research199630(7): 1702–1710

[7]

Merzouki MBernet  NDelgenès J P Benlemlih M . Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater. Bioresource Technology200596(12): 1317–1322

[8]

Copp J BDold  P L. Comparing sludge production under aerobic and anoxic conditions. Water Science and Technology199838(1): 285–294

[9]

Wang Y YPeng  Y ZPeng  C YWang  S YZeng  W. Influence of ORP variation, carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge from dephanox process. Water Science and Technology200450(10): 153–161

[10]

Peng Y ZWu  C YWang  R DLi  X L. Denitrifying phosphorus removal with nitrite by a real-time step feed sequencing batch reactor. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)201186(4): 541–546

[11]

Hagman MNielsen  J LNielsen  P HJansen  J. Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Research200842(6-7): 1539–1546

[12]

Carvalho GLemos  P COehmen  AReis M A . Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Research200741(19): 4383–4396

[13]

Kargi FUygur  ABaşkaya H S . Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR. Journal of Environmental Management200576(1): 71–75

[14]

Wang YJiang  FZhang Z Xing MLu  ZWu M Yang JPeng  Y. The long-term effect of carbon source on the competition between polyphosphorus accumulating organisms and glycogen accumulating organism in a continuous plug-flow anaerobic/aerobic (A/O) process. Bioresource Technology2010101(1): 98–104

[15]

Pijuan MCasas  CBaeza J A . Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Process Biochemistry200944(1): 97–105

[16]

Wachtmeister AKuba  TVan Loosdrecht M C MHeijnen J J . A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Water Research199731(3): 471–478

[17]

Oehmen ASaunders  A MVives  M TYuan  ZKeller J . Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Journal of Biotechnology2006123(1): 22–32

[18]

Oehmen ALemos  P CCarvalho  GYuan Z Keller J Blackall L L Reis M A . Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Research200741(11): 2271–2300

[19]

Chang KLi  X MWang  D BYang  QZeng G M . Effect of different ratios of propionate to acetate on phosphorus removal in sequencing batch reactor with single-stage oxic process. China Environmental Science20113: 007

[20]

Chinese SEPA, Water and Wastewater Monitoring Methods, 4th ed. Beijing: Chinese Environmental Science Publishing House, 2002

[21]

Schloss P DWestcott  S LRyabin  THall J R Hartmann M Hollister E B Lesniewski R A Oakley B B Parks D H Robinson C J Sahl J W Stres B Thallinger G G Van Horn D J Weber C F . Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology200975(23): 7537–7541

[22]

Jeon C OPark  J M. Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source. Water Research200034(7): 2160–2170

[23]

Li Y JChen  X HSun  L P. Effects of propionic/acetic acid ratios on denitrifying phosphorus removal. China Water and Wastewater201127(1): 79–81

[24]

Liu YChen  Y GZheng  H. Effect of different ratios of propionic to acetic acid on phosphorus removal by an enriched culture of phosphorus accumulating organisms. Acta Scientiae Circumstantiae200626(8): 1278–1283

[25]

Saito TBrdjanovic  Dvan Loosdrecht M C M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Research200438(17): 3760–3768

[26]

Lv X MShao  M FLi  JLi C L . Metagenomic analysis of the sludge microbial community in a lab-scale denitrifying phosphorus removal reactor. Applied Biochemistry and Biotechnology2015175(7): 3258–3270

[27]

Tian MZhao  FShen X Chu KWang  JChen S Guo YLiu  H. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. Journal of Environmental Sciences (China)201535: 181–190

[28]

Hill V RKahler  A MJothikumar  NJohnson T B Hahn DCromeans  T L. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Applied and Environmental Microbiology200773(13): 4218–4225

[29]

Zhang WHou  FPeng Y Liu QWang  S. Optimizing aeration rate in an external nitrification–denitrifying phosphorus removal (ENDPR) system for domestic wastewater treatment. Chemical Engineering Journal2014245: 342–347

[30]

Kim J MLee  H JKim  S YSong  J JPark  WJeon C O . Analysis of the fine-scale population structure of “Candidatus Accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. Applied and Environmental Microbiology201076(12): 3825–3835 PMID:20418432 

[31]

Kim J MLee  H JLee  D SJeon  C O. Characterization of the denitrification-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis” clades in sludge subjected to enhanced biological phosphorus removal. Applied and Environmental Microbiology201379(6): 1969–1979

[32]

Whang L MFilipe  C D MPark  J K. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms. Water Research200741(6): 1312–1324

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (567KB)

2370

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/