PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times

Shuai Wang , Tong Li , Chen Chen , Baicang Liu , John C. Crittenden

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 3

PDF (725KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 3 DOI: 10.1007/s11783-017-0980-0
RESEARCH ARTICLE
RESEARCH ARTICLE

PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times

Author information +
History +
PDF (725KB)

Abstract

PVDF blended different graft ratio of PVDF-g-PEGMA were systematically studied.

Tuning the amphiphilic copolymer synthesis time to control membrane performance.

The PVDF membrane with PVDF-g-PEGMA at 19 h possesses most surface oxygen content.

The synthesis time of PVDF-g-PEGMA at 9 h is good for high flux UF membrane.

Polyvinylidene fluoride grafted with poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) was synthesized using atomic transfer radical polymerization (ATRP) at different reaction times (9 h, 19 h, and 29 h). The corresponding conversion rates were 10%, 20% and 30%, respectively. PVDF was blended with the copolymer mixture containing PVDF-g-PEGMA, solvent and residual PEGMA under different reaction times. In this study, we explored the effect of the copolymer mixture additives with different synthesis times on cast membrane performance. Increasing the reaction time of PVDF-g-PEGMA causes more PVDF-g-PEGMA and less residual PEGMA to be found in the casting solution. Incremental PVDF-g-PEGMA can dramatically increase the viscosity of the casting solution. An overly high viscosity led to a delayed phase inversion, thus hindering PEGMA segments in PVDF-g-PEGMA from migrating to the membrane surface. However, more residual PEGMA contributed to helping more PEGMA segments migrate to the membrane surface. The pure water fluxes of the blended membrane with reaction times of 9 h, 19 h, and 29 h are 5445 L·m−2·h−1, 1068 L·m−2·h−1and 1179 L·m−2·h−1, respectively, at 0.07 MPa. Delayed phase inversion can form smaller surface pore size distributions, thus decreasing the water flux for the membranes with PVDF-g-PEGMA at 19 h and 29 h. Therefore, we can control the membrane pore size distribution by decreasing the reaction time of PVDF-g-PEGMA to obtain a better flux performance. The membrane with PVDF-g-PEGMA at 19 h exhibits the best foulant rejection and cleaning recovery due to its narrow pore size distribution and high surface oxygen content.

Graphical abstract

Keywords

Polyvinylidene fluoride ultrafiltration membrane / Amphiphilic copolymer / Blended modification / High flux / Atomic transfer radical polymerization

Cite this article

Download citation ▾
Shuai Wang, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times. Front. Environ. Sci. Eng., 2018, 12(2): 3 DOI:10.1007/s11783-017-0980-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kang G DCao  Y M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes–A review. Journal of Membrane Science2014463: 145–165

[2]

Liu FHashim  N ALiu  Y TAbed  M R MLi  K. Progress in the production and modification of PVDF membranes. Journal of Membrane Science2011375(1–2): 1–27

[3]

Moghimifar VRaisi  AAroujalian A . Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. Journal of Membrane Science2014461: 69–80

[4]

Ni LMeng  J QLi  X GZhang  Y F. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of Membrane Science2014451: 205–215

[5]

Zhao X TSu  Y LChen  W JPeng  J MJiang  Z Y. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. Journal of Membrane Science2012415–416: 824–834

[6]

Ren P FFang  YWan L S Ye X Y Xu Z K . Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): oxidative stability and antifouling capability. Journal of Membrane Science2015492: 249–256

[7]

Chen Y QWei  M JWang  Y. Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers: beyond surface segregation. Journal of Membrane Science2016505: 53–60

[8]

Liu Y NSu  Y LZhao  X TLi  Y FZhang  R NJiang  Z Y. Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. Journal of Membrane Science2015486: 195–206

[9]

Rajasekhar TTrinadh  MVeera Babu P Sainath A V S Reddy A V R . Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group. Journal of Membrane Science2015481: 82–93

[10]

Chen CTang  LLiu B C Zhang X Crittenden J Chen K L Chen Y S . Forming mechanism study of unique pillar-like and defect-free PVDF ultrafiltration membranes with high flux. Journal of Membrane Science2015487: 1–11

[11]

Liu B CChen  CLi T Crittenden J Chen Y S . High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. Journal of Membrane Science2013445: 66–75

[12]

Ochoa N. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. Journal of Membrane Science2003226(1–2): 203–211

[13]

Yuan ZDan  L X. Porous PVDF/TPU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30). Desalination2008223(1–3): 438–447

[14]

Liu B CChen  CZhao P J Li TLiu  C HWang  Q YChen  Y SCrittenden  J. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. Frontiers of Chemical Science and Engineering201610(4): 562–574

[15]

Xu Z WWu  T FShi  JTeng K Y Wang WMa  M JLi  JQian X M Li C Y Fan J T . Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science2016520: 281–293

[16]

Liang SGao  PGao X Q Xiao KHuang  X. Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles. Frontiers of Environmental Science & Engineering201610  (6):113–121doi:10.1007/s11783-016-0875-5

[17]

Zhao Y HQian  Y LZhu  B KXu  Y Y. Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process. Journal of Membrane Science2008310(1–2): 567–576

[18]

Minehara HDan  KIto Y Takabatake H Henmi M . Quantitative evaluation of fouling resistance of PVDF/PMMA-g-PEO polymer blend membranes for membrane bioreactor. Journal of Membrane Science2014466: 211–219

[19]

Ma W ZRajabzadeh  SShaikh A R Kakihana Y Sun Y C Matsuyama H . Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride) (PVDF) blend membranes. Journal of Membrane Science2016514: 429–439

[20]

Venault ALiu  Y HWu  J RYang  H SChang  YLai J Y Aimar P . Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of Membrane Science2014450: 340–350

[21]

Venault AWu  J RChang  YAimar P . Fabricating hemocompatible bi-continuous PEGylated PVDF membranes via vapor-induced phase inversion. Journal of Membrane Science2014470: 18–29

[22]

Carretier SChen  L AVenault  AYang Z R Aimar P Chang Y . Design of PVDF/PEGMA-b-PS-b-PEGMA membranes by VIPS for improved biofouling mitigation. Journal of Membrane Science2016510: 355–369

[23]

Moghareh Abed M R Kumbharkar S C Groth A M Li K. Economical production of PVDF-g-POEM for use as a blend in preparation of PVDF based hydrophilic hollow fibre membranes. Separation and Purification Technology2013106: 47–55

[24]

Hashim N ALiu  FLi K . A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. Journal of Membrane Science2009345(1–2): 134–141

[25]

Hester J FBanerjee  PWon Y Y Akthakul A Acar M H Mayes A M . ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules200235(20): 7652–7661

[26]

Wang J SMatyjaszewski  K. Controlled/”living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society1995117(20): 5614–5615 

[27]

Kato MKamigaito  MSawamoto M Higashimura T . Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(ii)/methylaluminum Bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules199528(5): 1721–1723

[28]

Katsoufidou KYiantsios  S GKarabelas  A J. An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination2008220(1–3): 214–227

[29]

Ye YChen  VFane A G . Modeling long-term subcritical filtration of model EPS solutions. Desalination2006191(1–3): 318–327

[30]

Kim H CDempsey  B A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. Journal of Membrane Science2013428: 190–197

[31]

Listiarini KChun  WSun D D Leckie J O . Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes. Journal of Membrane Science2009344(1–2): 244–251

[32]

Katsoufidou KYiantsios  S GKarabelas  A J. Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing. Journal of Membrane Science2007300(1–2): 137–146

[33]

Ang W SLee  SElimelech M . Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science2006272(1–2): 198–210

[34]

Awanis Hashim N Liu FMoghareh Abed  M RLi  K. Chemistry in spinning solutions: Surface modification of PVDF membranes during phase inversion. Journal of Membrane Science2012415–416: 399–411

[35]

Peinemann K V Abetz V Simon P F W . Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials20076(12): 992–996

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (725KB)

3337

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/