Sorption of phenanthrene to biochar modified by base

Zhengjun Feng , Lizhong Zhu

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 1

PDF (342KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 1 DOI: 10.1007/s11783-017-0978-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Sorption of phenanthrene to biochar modified by base

Author information +
History +
PDF (342KB)

Abstract

Base was applied to modify biochars from different feedstocks and temperatures.

Content of base soluble carbon followed the trend of rice straw>wood>bamboo.

Base soluble carbon can be extracted from biochar pyrolyzed below 500 °C.

Base modification increased the sorption ability of biochar pyrolyzed below 500 °C.

Removal of base soluble carbon increased biochar’s surface area and hydrophobicity.

Biochar (BC) is a potential material for removal of polycyclic aromatic hydrocarbons from soil and water, and base modification is a promising method for improving its sorption ability. In this study, we synthesized a series of base-modified biochars, and evaluated their sorption of phenanthrene. Original biochars were produced by pyrolysis of three feedstocks (rice straw, wood and bamboo) at five temperatures (300°C, 350°C, 400°C, 500°C and 700°C). Base-modified biochars were further obtained by washing of biochars with base solution. The base soluble carbon (SC) was extracted from the supernatant, which were only obtained from biochars pyrolyzed at low temperatures (<500°C) and the content was decreased with the increase of pyrolysis temperature. The SC content between different feedstocks followed the trend of rice straw>wood>bamboo when same pyrolysis conditions were applied. It was found that base modification improved the sorption of phenanthrene on biochars that SC could be extracted from (extractable-BCs). However, base treatment but had limited effects for biochars that no SC could be extracted from. It suggested that base modification improved the sorption of phenanthrene to extractable-BCs by removing the SC and thus increasing the surface area and hydrophobicity. Therefore, base modification was suggested to be used in modifying extractable-BCs.

Graphical abstract

Keywords

Biochar / Base modification / Phenanthrene

Cite this article

Download citation ▾
Zhengjun Feng, Lizhong Zhu. Sorption of phenanthrene to biochar modified by base. Front. Environ. Sci. Eng., 2018, 12(2): 1 DOI:10.1007/s11783-017-0978-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Purcaro GMoret SConte L S. Overview on polycyclic aromatic hydrocarbons: occurrence, legislation and innovative determination in foods. Talanta2013105: 292–305

[2]

Gan SLau E VNg H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials2009172(2–3): 532–549

[3]

Lamichhane SBal Krishna K CSarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere2016148: 336–353

[4]

Rajapaksha A UChen S STsang D CZhang MVithanage MMandal SGao BBolan N SOk Y S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere2016148: 276–291

[5]

Ahmad MRajapaksha A ULim J EZhang MBolan NMohan DVithanage MLee S SOk Y S. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere201499: 19–33

[6]

Beesley LMoreno-Jiménez EGomez-Eyles J LHarris ERobinson BSizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution2011159(12): 3269–3282

[7]

Cao XMa LGao BHarris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology200943(9): 3285–3291

[8]

Chen BZhou DZhu L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology200842(14): 5137–5143

[9]

Chen ZChen BZhou DChen W. Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environmental Science & Technology201246(22): 12476–12483

[10]

Chen ZChen BChiou C T. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environmental Science & Technology201246(20): 11104–11111

[11]

Chun YSheng GChiou C TXing B. Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology200438(17): 4649–4655

[12]

Sun KKang MZhang ZJin JWang ZPan ZXu DWu FXing B. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environmental Science & Technology201347(20): 11473–11481

[13]

Tan XLiu YZeng GWang XHu XGu YYang Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere2015125: 70–85

[14]

Liu ZZhang F SWu J. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel201089(2): 510–514

[15]

Lian FHuang FChen WXing BZhu L. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environmental Pollution2011159(4): 850–857

[16]

Yavari SMalakahmad ASapari N B. Biochar efficiency in pesticides sorption as a function of production variables—a review. Environmental Science and Pollution Research International201522(18): 13824–13841

[17]

Sharma R KWooten J BBaliga V LLin XGeoffrey Chan WHajaligol M R. Characterization of chars from pyrolysis of lignin. Fuel200483(11–12): 1469–1482

[18]

Sharma R KWooten J BBaliga V LMartoglio-Smith P AHajaligol M R. Characterization of char from the pyrolysis of tobacco. Journal of Agricultural and Food Chemistry200250(4): 771–783

[19]

Han LQian LYan JChen M. Contributions of different biomass components to the sorption of 1,2,4-trichlorobenzene under a series of pyrolytic temperatures. Chemosphere2016156: 262–271

[20]

Ahmed M BZhou J LNgo H HGuo WChen M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology2016214: 836–851

[21]

Fan YWang BYuan SWu XChen JWang L. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource Technology2010101(19): 7661–7664

[22]

Francioso OSanchez-Cortes SBonora SRoldan M LCertini G. Structural characterization of charcoal size-fractions from a burnt Pinus pinea forest by FT-IR, Raman and surface-enhanced Raman spectroscopies. Journal of Molecular Structure2011994(1–3): 155–162 

[23]

Chiou C TMcgroddy S EKile D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science & Technology199832(2): 264–269

[24]

Chiou C TKile D ERutherford D WSheng G YBoyd S A. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity. Environmental Science & Technology200034(7): 1254–1258

[25]

Kang SXing B. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science & Technology200539(1): 134–140

[26]

Liu PLiu W JJiang HChen J JLi W WYu H Q. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology2012121: 235–240

[27]

Li Y CShao J AWang X HDeng YYang H PChen H P. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy & Fuels201428(8): 5119–5127 

[28]

Keiluweit MNico P SJohnson M GKleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology201044(4): 1247–1253

[29]

Cornelissen GGustafsson O. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environmental Science & Technology200438(1): 148–155

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (342KB)

Supplementary files

FSE-17073-OF-FZJ_suppl_1

2903

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/