Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite

Fenghe Lv , Hua Wang , Zhangliang Li , Qi Zhang , Xuan Liu , Yan Su

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 4

PDF (301KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 4 DOI: 10.1007/s11783-017-0977-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite

Author information +
History +
PDF (301KB)

Abstract

Deposition Au nanoparticles on both TiO2 and RGO to fabricate Au/TiO2/RGO.

Au/TiO2/RGO displayed a high H2O2 and •OH production in photocatalytic process.

RGO is a good collector to transfer electrons from TiO2 to Au.

A new type of Au/TiO2/reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO2 on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO2 and RGO. Au/TiO2/RGO had a better photocatalytic activity than Au/TiO2 for the degradation of phenol. Electrochemical measurements indicated that Au/TiO2/RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO2/RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO2/RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO2 to effectively reduce photogenerated charge recombination.

Graphical abstract

Keywords

Reduced graphene oxide / Au / TiO 2 / Nanocomposite / Photocatalysis

Cite this article

Download citation ▾
Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite. Front. Environ. Sci. Eng., 2018, 12(1): 4 DOI:10.1007/s11783-017-0977-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hoffmann M RMartin  S TChoi  WBahnemannt D W . Environmental applications of semiconductor photocatalysis. Chemical Reviews199595(1): 69–96

[2]

Nakata KFujishima  A. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews201213(3): 169–189

[3]

Wang HQuan  XYu H T Chen S. Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability. Carbon200846(8): 1126–1132

[4]

Hashimoto KIrie  HFujishima A . TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics200544(12): 8269–8285

[5]

Mor G KShankar  KPaulose M Varghese O K Grimes C A . Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters20066(2): 215–218

[6]

Ge MGuo  CZhu X Ma LHan  ZHu W Wang Y. Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Frontiers of Environmental Science & Engineering20093(3): 271–280

[7]

Wang SWang  KJehng J Liu L. Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity. Frontiers of Environmental Science & Engineering20126(3): 304–312

[8]

Tian YTatsuma  T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society2005127(20): 7632–7637

[9]

Méndez-Medrano M G Kowalska E Lehoux A Herissan A Ohtani B Rau SColbeau-Justin  CRodríguez-López  J LRemita  H. Surface modification of TiO2 with Au nanoclusters for efficient water treatment and hydrogen generation under visible light. Journal of Physical Chemistry C2016120(43): 25010–25022

[10]

Gołąbiewska A Malankowska A Jarek M Lisowski W Nowaczyk G Jurga S Zaleska-Medynska A . The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2. Applied Catalysis B: Environmental2016196: 27–40

[11]

Stankovich SDikin  D ADommett  G H BKohlhaas  K MZimney  E JStach  E APiner  R DNguyen  S TRuoff  R S. Graphene-based composite materials. Nature2006442(7100): 282–286

[12]

Perreault FFonseca de Faria  AElimelech M . Environmental applications of graphene-based nanomaterials. Chemical Society Reviews201544(16): 5861–5896

[13]

Zhang NYang  M QLiu  SSun Y Xu Y J . Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chemical Reviews2015115(18): 10307–10377

[14]

Zhang HLv  XLi Y Wang YLi  J. P25-graphene composite as a high performance photocatalyst. ACS Nano20104(1): 380–386

[15]

Zhang NZhang  YXu Y J . Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale20124(19): 5792–5813

[16]

Tu WZhou  YZou Z . Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Advanced Functional Materials201323(40): 4996–5008

[17]

Xiang QYu  JJaroniec M . Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society2012134(15): 6575–6578

[18]

Liu YYu  HWang H Chen SQuan  XEfficient H . 2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2. Materials Research Bulletin201459: 111–116

[19]

Yuan JShiller  A M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Analytical Chemistry199971(10): 1975–1980

[20]

Wang HZhang  XSu Y Yu HChen  SQuan X Yang F. Photoelectrocatalytic oxidation of aqueous ammonia using TiO2 nanotube arrays. Applied Surface Science2014311: 851–857

[21]

Kotal MBhowmick  A K. Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. Journal of Physical Chemistry C2013117(48): 25865–25875

[22]

Wang HSu  YZhao H Yu HChen  SZhang Y Quan X. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environmental Science & Technology201448(20): 11984–11990

[23]

Yu HMa  BChen S Zhao QQuan  XAfzal S . Electrocatalytic debromination of BDE-47 at palladized graphene electrode. Frontiers of Environmental Science & Engineering20148(2): 180–187

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (301KB)

4551

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/