Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process

Mingxin Dong , Jun Wang , Jinxin Zhu , Jianqiang Wang , Wulin Wang , Meiqing Shen

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 11

PDF (1018KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 11 DOI: 10.1007/s11783-017-0976-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process

Author information +
History +
PDF (1018KB)

Abstract

• The NOx reduction ability of Pt/BaO/Al2O3 can be improved by Pd doping.

• Pd-Ba interaction inhibits the NO dissociation over Pd sites.

• (Pt/BaO/Al2O3+Pd/Al2O3) exhibits superior NSR performance.

• (Pt-Pd/BaO/Al2O3+Al2O3) is proved to be an unwished Pd-modified catalyst.

• The N2O formation mechanism over Pd-modified catalyst is provided.

N2O is a powerful greenhouse gas and plays an important role in destructing the ozone layer. This present work investigated the effects of Pd doping on N2O formation over Pt/BaO/Al2O3 catalyst. Three types of catalysts, Pt/BaO/Al2O3, Pt/Pd mechanical mixing catalyst (Pt/BaO/Al2O3+Pd/Al2O3) and Pt-Pd co-impregnation catalyst (Pt-Pd/BaO/Al2O3) were prepared by incipient wetness impregnation method. These catalysts were first evaluated in NSR activity tests using H2/CO as reductants and then carefully characterized by BET, CO chemisorption, CO-DRIFTs and H2-TPR techniques. In addition, temperature programmed reactions of NO with H2/CO were conducted to obtain further information about N2O formation mechanism. Compared with Pt/BaO/Al2O3, (Pt/BaO/Al2O3+Pd/Al2O3) produced less N2O and more NH3 during NOx storage and reduction process, while an opposite trend was found over (Pt-Pd/BaO/Al2O3+Al2O3). Temperature programmed reactions of NO with H2/CO results showed that Pd/Al2O3 component in (Pt/BaO/Al2O3+Pd/Al2O3) played an important role in NO reduction to NH3, and the formed NH3 could reduce NOx to N2 leading to a decrease in N2O formation. Most of N2O formed over (Pt-Pd/BaO/Al2O3+Al2O3) was originated from Pd/BaO/Al2O3 component. H2-TPR results indicated Pd-Ba interaction resulted in more difficult-to-reduce PdOx species over Pd/BaO/Al2O3, which inhibits the NO dissociation and thus drives the selectivity to N2O in NO reduction.

Graphical abstract

Keywords

NO x storage reduction / Pt/BaO/Al 2O 3 / Pd doping / N 2O formation / Optimization

Cite this article

Download citation ▾
Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process. Front. Environ. Sci. Eng., 2017, 11(6): 11 DOI:10.1007/s11783-017-0976-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zou QLu KWu YYang YDu ZHu M. Ambient photolysis frequency of NO2 determined using chemical actinometer and spectroradiometer at an urban site in Beijing. Frontiers of Environmental Science & Engineering201610(6): 13–21

[2]

George CBeeldens ABarmpas FDoussin J FManganelli GHerrmann HKleffmann JMellouki A. Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science & Engineering201610(5): 02

[3]

Takahashi NShinjoh HIijima TSuzuki TYamazaki KYokota KSuzuki HMiyoshi NMatsumoto S ITanizawa TTanaka TTateishi SKasahara K. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catalysis Today199627(1–2): 63–69

[4]

Wang XYu YHe H. Effect of Co addition to Pt/Ba/Al2O3 system for NOx storage and reduction. Applied Catalysis B: Environmental2010100(1–2): 19–30

[5]

Epling W SCampbell L EYezerets ACurrier N WParks J E II. Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catalysis Reviews200446(2): 163–245

[6]

Liu ZIhl Woo S. Recent advances in catalytic DeNOx science and technology. Catalysis Reviews200648(1): 43–89

[7]

Zhang YYu YHe H. Oxygen vacancies on nanosized ceria govern the NOx storage capacity of NSR catalysts. Catalysis Science & Technology20166(11): 3950–3962

[8]

Partridge W PChoi J S. NH3 formation and utilization in regeneration of Pt/Ba/Al2O3 NOx storage-reduction catalyst with H2. Applied Catalysis B: Environmental200991(1–2): 144–151

[9]

National Highway Traffic Safety Administration. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards: final rule. Federal Register201040: 25323–25728

[10]

Mráček DKočí PMarek MChoi J SPihl J APartridge W P. Dynamics of N2 and N2O peaks during and after the regeneration of lean NOx trap. Applied Catalysis B: Environmental2015166: 509–517 doi:10.1016/j.apcatb.2014.12.002

[11]

Bártová ŠKočí PMráček DMarek MPihl J AChoi J SToops T JPartridge W P. New insights on N2O formation pathways during lean/rich cycling of a commercial lean NOx trap catalyst. Catalysis Today2014231: 145–154

[12]

Kubiak LRighini LCastoldi LMatarrese RForzatti PLietti LDaturi M. Mechanistic aspects of N2O formation over Pt-based lean NOx trap catalysts. Topics in Catalysis201659(10–12): 976–981

[13]

Lietti LRighini LCastoldi LArtioli NForzatti P. Labeled 15NO study on N2 and N2O formation over Pt-Ba/Al2O3 NSR catalysts. Topics in Catalysis201356(1–8): 7–13

[14]

Elizundia UDuraiswami DPereda-Ayo BLópez-Fonseca RGonzález-Velasco J R. Controlling the selectivity to N2O over Pt/Ba/Al2O3 NOx storage/reduction catalysts. Catalysis Today2011176(1): 324–327

[15]

Masdrag LCourtois XCan FDuprez D. Effect of reducing agent (C3H6, CO, H2) on the NOx conversion and selectivity during representative lean/rich cycles over monometallic platinum-based NSR catalysts. Influence of the support formulation. Applied Catalysis B: Environmental2014146: 12–23

[16]

Nova ICastoldi LLietti LTronconi EForzatti P. How to control the selectivity in the reduction of NOx with H2 over Pt-Ba/Al2O3 Lean NOx Trap catalysts. Topics in Catalysis200742(1): 21–25

[17]

Lindholm ASjövall HOlsson L. Reduction of NOx over a combined NSR and SCR system. Applied Catalysis B: Environmental201098(3–4): 112–121

[18]

Bobadilla L FMarie OBazin PDaturi M. Effect of Pd addition on the efficiency of a NOx-trap catalyst: a FTIR operando study. Catalysis Today2013205: 24–33

[19]

Sekiba TKimura SYamamoto HOkada A. Development of automotive palladium three-way catalysts. Catalysis Today199422(1): 113–126

[20]

Zhang QLv LZhu JWang XWang JShen M. The effect of CO on NO reduction over Pt/Pd-based NSR catalysts at low temperature. Catalysis Science & Technology20133(4): 1069–1077

[21]

Zhu JWang JWang JLv LWang XShen M. New insights into the N2O formation mechanism over Pt-BaO/Al2O3 model catalysts using H2 as a reductant. Environmental Science & Technology201549(1): 504–512

[22]

Wang JWang XZhu JWang JShen M. Elucidating N2O formation during the cyclic NOx storage and reduction process using CO as a reductant. Environmental Science & Technology201549(13): 7965–7973

[23]

Canton PFagherazzi GBattagliarin MMenegazzo FPinna FPernicone N. Pd/CO average chemisorption stoichiometry in highly dispersed supported Pd/g-Al2O3 catalysts. Langmuir200218(17): 6530–6535

[24]

Auvray XPingel TOlsson EOlsson L. The effect gas composition during thermal aging on the dispersion and NO oxidation activity over Pt/Al2O3 catalysts. Applied Catalysis B: Environmental2013129: 517–527

[25]

Carlsson P AÖsterlund LThormählen PPalmqvist AFridell EJansson JSkoglundh M. A transient in situ FTIR and XANES study of CO oxidation over Pt/Al2O3 catalysts. Journal of Catalysis2004226(2): 422–434

[26]

Amberntsson AFridell ESkoglundh M. Influence of platinum and rhodium composition on the NOx storage and sulphur tolerance of a barium based NOx storage catalyst. Applied Catalysis B: Environmental200346(3): 429–439

[27]

Cant N WLiu I OPatterson M J. The effect of proximity between Pt and BaO on uptake, release, and reduction of NOx on storage catalysts. Journal of Catalysis2006243(2): 309–317

[28]

Kubiak LMatarrese RCastoldi LLietti LDaturi MForzatti P. Study of N2O formation over Rh- and Pt-based LNT catalysts. Catalysts20166(3): 36–51

[29]

Zorn KGiorgio SHalwax EHenry C RGrönbeck HRupprechter G. CO oxidation on technological Pd-Al2O3 catalysts: oxidation state and activity. Journal of Physical Chemistry C2011115(4): 1103–1111

[30]

Olsson LZhdanov V PKasemo B. Role of steps in the NO-CO reaction on the (1 1 1) surface of noble metals. Surface Science2003529(3): 338–348 

[31]

Hwang C PYeh C T. Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina. Journal of Molecular Catalysis A: Chemical1996112(2): 295–302 

[32]

Luo J YMeng MZha Y QXie Y NHu T DZhang JLiu T. A comparative study of Pt/Ba/Al2O3 and Pt/Fe-Ba/Al2O3 NSR catalysts: new insights into the interaction of Pt-Ba and the function of Fe. Applied Catalysis B: Environmental200878(1–2): 38–52

[33]

Zhou RZhao BYue B. Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity. Applied Surface Science2008254(15): 4701–4707

[34]

Pisanu A MGigola C E. NO decomposition and NO reduction by CO over Pd/a-Al2O3. Applied Catalysis B: Environmental199920(3): 179–189

[35]

Szailer TKwak JKim DHanson JPeden CSzanyi J. Reduction of stored NOx on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts with H2 and CO. Journal of Catalysis2006239(1): 51–64

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1018KB)

4031

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/