Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes

Yang-ying Zhao , Fan-xin Kong , Zhi Wang , Hong-wei Yang , Xiao-mao Wang , Yuefeng F. Xie , T. David Waite

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 20

PDF (674KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 20 DOI: 10.1007/s11783-017-0975-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes

Author information +
History +
PDF (674KB)

Abstract

Rejection of pharmaceuticals (PhACs) followed the order NF90 ≈ ESPA1>NF270>HL.

Electrostatic effect had an important role in PhAC rejection by loose NF membranes.

Effect of adsorption on rejection followed the order HL>ESPA1>NF270>NF90.

High hydrogen bond formation potential of PhACs impaired the rejection by HL.

This study was conducted to assess the merits and limitations of various high-pressure membranes, tight nanofiltration (NF) membranes in particular, for the removal of trace organic compounds (TrOCs). The performance of a low-pressure reverse osmosis (LPRO) membrane (ESPA1), a tight NF membrane (NF90) and two loose NF membranes (HL and NF270) was compared for the rejection of 23 different pharmaceuticals (PhACs). Efforts were also devoted to understand the effect of adsorption on the rejection performance of each membrane. Difference in hydrogen bond formation potential (HFP) was taken into consideration. Results showed that NF90 performed similarly to ESPA1 with mean rejection higher than 95%. NF270 outperformed HL in terms of both water permeability and PhAC rejection higher than 90%. Electrostatic effects were more significant in PhAC rejection by loose NF membranes than tight NF and LPRO membranes. The adverse effect of adsorption on rejection by HL and ESPA1 was more substantial than NF270 and NF90, which could not be simply explained by the difference in membrane surface hydrophobicity, selective layer thickness or pore size. The HL membrane had a lower rejection of PhACs of higher hydrophobicity (log D>0) and higher HFP (>0.02). Nevertheless, the effects of PhAC hydrophobicity and HFP on rejection by ESPA1 could not be discerned. Poor rejection of certain PhACs could generally be explained by aspects of steric hindrance, electrostatic interactions and adsorption. High-pressure membranes like NF90 and NF270 have a high promise in TrOC removal from contaminated water.

Graphical abstract

Keywords

Trace organic compounds (TrOCs) / Nanofiltration (NF) / Adsorption / Membrane properties / Water treatment

Cite this article

Download citation ▾
Yang-ying Zhao, Fan-xin Kong, Zhi Wang, Hong-wei Yang, Xiao-mao Wang, Yuefeng F. Xie, T. David Waite. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes. Front. Environ. Sci. Eng., 2017, 11(6): 20 DOI:10.1007/s11783-017-0975-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benotti M JTrenholm R AVanderford B JHolady J CStanford B DSnyder S A. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science & Technology200943(3): 597–603

[2]

Jin XHu J. Role of water chemistry on estrone removal by nanofiltration with the presence of hydrophobic acids. Frontiers of Environmental Science & Engineering20159(1): 164–170

[3]

Geise G MPaul D RFreeman B D. Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science201439(1): 1–42

[4]

Wang XYang HLi ZYang SXie Y. Pilot study for the treatment of sodium and fluoride-contaminated groundwater by using high-pressure membrane systems. Frontiers of Environmental Science & Engineering20159(1): 155–163

[5]

Doederer KFarré M JPidou MWeinberg H SGernjak W. Rejection of disinfection by-products by RO and NF membranes: influence of solute properties and operational parameters. Journal of Membrane Science2014467(1): 195–205

[6]

Kimura KAmy GDrewes J EHeberer TKim T UWatanabe Y. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. Journal of Membrane Science2003227(1): 113–121

[7]

Radjenović JPetrović MVentura FBarceló D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Research200842(14): 3601–3610

[8]

Comerton A MAndrews R CBagley D MHao C. The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties. Journal of Membrane Science2008313(1): 323–335

[9]

Bellona CDrewes J EXu PAmy G. Factors affecting the rejection of organic solutes during NF/RO treatment: a literature review. Water Research200438(12): 2795–2809

[10]

Kong F XYang H WWang X MXie Y F. Assessment of the hindered transport model in predicting the rejection of trace organic compounds by nanofiltration. Journal of Membrane Science2015498: 57–66

[11]

Wang XLi BZhang TLi X Y. Performance of nanofiltration membrane in rejecting trace organic compounds: experiment and model prediction. Desalination2015370: 7–16

[12]

Dong LHuang XWang ZYang ZWang XTang C Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology2016166: 230–239

[13]

Verliefde A R DCornelissen E RHeijman S G JHoek E M VAmy G LVan der Bruggen BVan Dijkt J C. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes. Environmental Science & Technology200943(7): 2400–2406

[14]

Mahlangu TSchoutteten KD’Haese AVan den Bussche JVanhaecke LThwala JMamba BVerliefde A. Role of permeate flux and specific membrane-foulant-solute affinity interactions (∆ Gslm) in transport of trace organic solutes through fouled nanofiltration (NF) membranes. Journal of Membrane Science2016518: 203–215

[15]

Steinle-Darling ELitwiller EReinhard M. Effects of sorption on the rejection of trace organic contaminants during nanofiltration. Environmental Science & Technology201044(7): 2592–2598

[16]

Israelachvili J N. Intermolecular and Surface Forces. San Francisco: Academic Press, 2015

[17]

Nghiem L DSchäfer A I. Adsorption and transport of trace contaminant estrone in NF/RO membranes. Environmental Engineering Science200219(6): 441–451

[18]

Schäfer A IAkanyeti ISemião A J C. Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens. Advances in Colloid & Interface Science2011164(S1–2): 100–117

[19]

Nghiem L DSchäfer A IElimelech M. Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. Environmental Science & Technology200438(6): 1888–1896

[20]

Shah A DHuang C HKim J H. Mechanisms of antibiotic removal by nanofiltration membranes: model development and application. Journal of Membrane Science2012389: 234–244

[21]

Dolar DVuković AAšperger DKosutić K. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. Journal of Environmental Sciences- China201123(8): 1299–1307

[22]

Hoek E MElimelech M. Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Environmental Science & Technology200337(24): 5581–5588

[23]

Plakas KKarabelas AWintgens TMelin T. A study of selected herbicides retention by nanofiltration membranes—the role of organic fouling. Journal of Membrane Science2006284(1): 291–300

[24]

Semião A JSchäfer A I. Estrogenic micropollutant adsorption dynamics onto nanofiltration membranes. Journal of Membrane Science2011381(1): 132–141

[25]

Kong F XYang H WWu Y QWang X MXie Y F. Rejection of pharmaceuticals during forward osmosis and prediction by using the solution–diffusion model. Journal of Membrane Science2015476(476): 410–420

[26]

Bowen W RWelfoot J S. Modelling the performance of membrane nanofiltration—critical assessment and model development. Chemical Engineering Science200257(7): 1121–1137

[27]

Kim S DCho JKim I SVanderford B JSnyder S A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research200741(5): 1013–1021

[28]

Ventresque CGisclon VBablon GChagneau G. An outstanding feat of modern technology: the Mery-sur-Oise Nanofiltration Treatment Plant (340,000 m3/d). Desalination2000131(1): 1–16

[29]

Freger VGilron JBelfer S. TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study. Journal of Membrane Science2002209(1): 283–292

[30]

Liang LZhang JFeng PLi CHuang YDong BLi LGuan X. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies. Frontiers of Environmental Science & Engineering20159(1): 16–38

[31]

Redding A MCannon F SSnyder S AVanderford B J. A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons. Water Research200943(15): 3849–3861

[32]

Nghiem L DSchäfer A IElimelech M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environmental Science & Technology200539(19): 7698–7705

[33]

Yangali-Quintanilla VSadmani AMcConville MKennedy MAmy G. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Research200943(9): 2349–2362

[34]

SchäferA I Waite T DFane A G. Nanofiltration: Principles and Applications. Amsterdam: Elsevier, 2005, 121–122

[35]

Tang C YKwon Y NLeckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination2009242(1–3): 149–167

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (674KB)

Supplementary files

FSE-17077-OF-ZYY_suppl_1

2940

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/