Silicon carbide waste as a source of mixture materials for cement mortar

Zhengwu Jiang , Qiang Ren , Haoxin Li , Qing Chen

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 2

PDF (489KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 2 DOI: 10.1007/s11783-017-0974-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Silicon carbide waste as a source of mixture materials for cement mortar

Author information +
History +
PDF (489KB)

Abstract

SiC waste decreases the fluidity of fresh mortar.

Mortar with SiC waste exhibits lower strength at early ages but higher strength at later ages.

SiC waste decrease the shrinkage rate of cement mortar.

SiC waste has some impacts on the hydration of the cement-SiC waste system.

SiC waste densifies the microstructure of hardened cement paste.

This paper presents an investigation of the feasibility of recycling silicon carbide waste (SCW) as a source of mixture materials in the production of cement mortar. Mortars with SCW were prepared by replacing different amounts of cement with SCW, and the properties of the resulting mortars, such as the fluidity, strength and shrinkage, were studied in this work. Thermogravimetry-differential scanning calorimetry and scanning electron microscopy were employed to understand the reasons for the property changes of the mortars. The results indicate that SCW decreases the initial and 1-h fluidity of fresh mortar but improves the loss of fluidity. The mortar with SCW exhibits a lower strength at 3 d and 7 d but a higher strength at 28 d and 56 d compared to the control. The shrinkage rate of cement mortar with SCW shows an obvious decrease as the replacement ratio increases. In addition, the content of calcium hydroxide in hardened paste also shows that SCW has some impact on the hydration of the cement-SCW system. The microstructures of the hardened paste also show evidence for a later strength change of mortar containing SCW. This work provides a strategic reference for possibly applying SCW as a mixture material in the production of cement mortar.

Graphical abstract

Keywords

Silicon carbide waste / Cement mortar / Fluidity / Strength / Shrinkage

Cite this article

Download citation ▾
Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen. Silicon carbide waste as a source of mixture materials for cement mortar. Front. Environ. Sci. Eng., 2017, 11(5): 2 DOI:10.1007/s11783-017-0974-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Choi JFthenakis V. Crystalline silicon photovoltaic recycling planning: macro and micro perspectives. Journal of Cleaner Production201466: 443–449

[2]

Li D GXing P FZhuang Y XLi FTu G F. Recovery of high purity silicon from S0G crystalline silicon cutting slurry waste. Transactions of Nonferrous Metals Society of China201424(4): 1237–1241

[3]

He S MYuan S QZhu L F. Research status on the recovery of wire sawing slurry of crystalline silicon. Chemical Industry and Engineering Progress201332(4): 925–929 (in Chinese)

[4]

Hsu H PHuang W PYang C FLan C W. Silicon recovery from cutting slurry by phase transfer separation. Separation and Purification Technology2014133(36): 1–7

[5]

Xing P FZhao P YGuo JLiu YLi FTu G F. Recovery of cutting slurry waste of solar-grade silicon. Materials Review201125(1): 75–59

[6]

Drouiche NCuellar PKerkar FMedjahed SBoutouchent-Guerfi NHamou M O. Recovery of solar grade silicon from kerf loss slurry waste. Renewable & Sustainable Energy Reviews201432(5): 936–943 

[7]

Murthy H S G K. Evolution and present status of silicon carbide slurry recovery in silicon wire sawing. Resources, Conservation and Recycling2015104: 194–205

[8]

Sergiienko S APogorelov B VDaniliuk V B. Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots. Separation and Purification Technology2014133(36): 16–21

[9]

Chen WHong JYuan XLiu J. Environmental impact assessment of monocrystalline silicon solar photovoltaic cell production: a case study in China. Journal of Cleaner Production2016112(6404): 1025–1032

[10]

Farzadnia NAli A A ADemirboga R. Incorporation of mineral admixtures in sustainable high performance concrete. International of Sustainable Construction20112(1): 44–56

[11]

Lertwattanaruk PMakul NSiripattarapravat C. Utilization of ground waste seashells in cement mortars for masonry and plastering. Journal of Environmental Management2012111(6): 133–141

[12]

Nazer APayá JBorrachero M VMonzó J. Use of ancient copper slags in Portland cement and alkali activated cement matrices. Journal of Environmental Management2016167: 115–123

[13]

Wu B RWang D YChai X LTakahashi FShimaoka T. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives. Frontiers of Environmental Science & Engineering201610(4): 08

[14]

Lin K LChang W CLin D FLuo H LTsai M C. Effects of nano-SiO2 and different ash particle sizes on sludge ash-cement mortar. Journal of Environmental Management200888(4): 708–714

[15]

Sabet F ALibre N AShekarchi M. Mechanical and durability properties of self-consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Construction & Building Materials201344: 175–184

[16]

Supit S W MShaikh F U ASarker P K. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Construction & Building Materials201451(2): 278–286

[17]

Ferraris C FObla K HHill R. The influence of mineral admixtures on the rheology of cement paste and concrete. Cement and Concrete Research200131(2): 245–255

[18]

Uysal MYilmaz K. Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete Composites201133(7): 771–776

[19]

Bostanci S CLimbachiya MKew H. Portland slag and composites cement concretes: engineering and durability properties. Journal of Cleaner Production2016112: 542–552

[20]

Kalla PRana AChad Y BMisra ACsetenyi L. Durability studies on concrete containing wollastonite. Journal of Cleaner Production201587: 726–734

[21]

Chinese National Standard, GB/T 2419: Test method for Fluidity of Cement Mortar, 2005

[22]

Chinese National Standard, GB/T 17671: Method of Testing Cements-Determination of Strength, 1999

[23]

Chinese Building Material Industry Standard, JGJ/T 70: Standard for Test Method of Basic Properties of Construction Mortar, 2009

[24]

Midgley H G. The determination of calcium hydroxide in set Portland cements. Cement and Concrete Research19799(1): 77–82

[25]

Libre N AKhoshnazar RShekarchi M. Relationship between fluidity and stability of self-consolidating mortar incorporating chemical and mineral admixtures. Construction & Building Materials201024(7): 1262–1271

[26]

Yao L YYao L HWang XYang L Q. Study of effect of fly ash on fluidity and strength of cement mortar. Coal Ash201304: 1–3 (in Chinese)

[27]

Ren QJiang Z WMa J W. Influence of mineral admixtures on the strength of magnesia phosphate cement-based rapid repair  mortar. Journal of Building Materials201219(6): 1062–1067 (in Chinese)

[28]

Rao M JWei J PGao Z YZhou WLi Q LLiu S H. Study on strength and microstructure of cement-based materials containing combination mineral admixtures. Advances in Materials Science and Engineering2016, 7243670

[29]

Li CZhu H BWu M XWu K FJiang Z W. Pozzolanic reaction of fly ash modified by fluidized bed reactor-vapor deposition. Cement and Concrete Research201792: 98–109

[30]

Chindaprasirt PHomwuttiwong SSirivivatnanon V. Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research200434(7): 1087–1092

[31]

Kocak YNas S. The effect of using fly ash on the strength and hydration characteristics of blended cements. Construction & Building Materials201473: 25–32

[32]

Mostafa N YMohsen QEl-Hemaly S A SEl-Korashy S ABrown P W. High replacements of reactive pozzolan in blended cements: Microstructure and mechanical properties. Cement and Concrete Composites201032(5): 386–391

[33]

Deschner FWinnefeld FLothenbach BSeufert SSchwesig PDittrich SGoetz-Neunhoeffer FNeubauer J. Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research201242(10): 1389–1400

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (489KB)

3336

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/