Pollutant reduction effectiveness of low-impact development drainage system in a campus

Shuhan Zhang, Yingying Meng, Jiao Pan, Jiangang Chen

PDF(1671 KB)
PDF(1671 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 14. DOI: 10.1007/s11783-017-0969-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Pollutant reduction effectiveness of low-impact development drainage system in a campus

Author information +
History +

Highlights

The average reused rainwater was 5256 m3 annually in the school.

The runoff removal rate was 80.37% annually in the school.

Runoff pollutant concentration was positively related with the rainfall interval.

The NSP reduction effectiveness of the LID system was very obvious.

Abstract

Building a rainwater system based on the idea of low-impact development (LID) is an important aspect of the current “sponge city” construction in China. The “sponge city” concept emphasizes that the runoff can permeate the soil or be stored temporarily, and rainwater could be used again when it is needed. Beijing is one of the earliest cities to study rainwater harvesting and LID techniques in China. Through long-term monitoring of rainfall, runoff flow, and water quality of a campus demonstration project in Beijing, the runoff quantity and pollutant concentration variations have been analyzed. Furthermore, the runoff reduction effects of single LID measure, such as green roof, filtration chamber, and permeable pavement, have been investigated. Additionally, the overall reduction effectiveness of the LID system on the average annual rainfall runoff and pollution load has been discussed. Preliminary studies suggest that runoff pollutant concentration is positively correlated with the rainfall interval time, and the longer rainfall interval time leads to higher runoff pollutant concentrations. The very good outflow quality of the rainwater harvesting system could satisfy the reclaimed water quality standard for scenic entertainment use. The non-point-source pollution reduction effects of the LID system are obvious because the pollutants could be removed by filtration on the one hand and the pollution load could be reduced because of the significantly reduced outflow on the other hand.

Graphical abstract

Keywords

Low-impact development / Rainwater harvesting / Non-point-source pollution reduction / Campus

Cite this article

Download citation ▾
Shuhan Zhang, Yingying Meng, Jiao Pan, Jiangang Chen. Pollutant reduction effectiveness of low-impact development drainage system in a campus. Front. Environ. Sci. Eng., 2017, 11(4): 14 https://doi.org/10.1007/s11783-017-0969-8

References

[1]
Dietz M E. Low impact development practices: a review of current research and recommendations for future directions. Water, Air, and Soil Pollution, 2007, 186(1): 351–363
CrossRef Google scholar
[2]
Khan S, Stenstorm M K, Lau S L, Kayhanian M. Oil and grease measurement in highway runoff-sampling time and event mean concentrations. Journal of Environmental Engineering, 2006, 132(3): 415–422
CrossRef Google scholar
[3]
Mcduffie E, Mallari N, Pate D, Smith B, Zeder L M. A study of ecosystem services provided by a storm water retrofit system on a public school campus in orange county, North Carolina. Sustainability the Journal of Record, 2015, 8(2): 85–94
CrossRef Google scholar
[4]
Walsh C J, Kunapo J. The importance of upland flow paths in determining urban effects on stream ecosystems. Freshwater Science, 2009, 28(4): 977–990
[5]
Chow M F, Yusop Z, Shirazi S M. Storm runoff quality and pollutant loading from commercial, residential, and industrial catchments in the tropic. Environmental Monitoring and Assessment, 2013, 185(10): 8321–8331
CrossRef Pubmed Google scholar
[6]
Li W, Shen Z, Tian T, Liu R, Qiu J. Temporal variations of heavy metal pollution in urban stormwater runoff. Frontiers of Environmental Science & Engineering, 2012, 6(5): 692–700
CrossRef Google scholar
[7]
Wengrove M E, Ballestero T P. Upstream to downstream: stormwater quality in Mayagüez, Puerto Rico. Environmental Monitoring and Assessment, 2012, 184(8): 5025–5034
CrossRef Pubmed Google scholar
[8]
Environmental Protection Agency. Water: Outreach & Communication-Nonpoint Source Pollution: The Nation’s Largest Water Quality Problem. http://water.epa.gov/polwaste/nps/outreach/point1.cfm (last accessed 01/18/2017)
[9]
Schueler T, Claytor R. Maryland Stormwater Design Manual. Maryland Department of the Environment Baltimore, MD, 2000
[10]
United States Environmental Protection Agency. Storm Water Technology Fact Sheet. Washington, DC; USEPA, 1999, 1–10
[11]
Jia H F, Yao H R, Yu SL. Advances in LID BMPs research and practices for urban runoff control in China. Frontiers of Environmental Science & Engineering, 2013, 7(5): 709–720
CrossRef Google scholar
[12]
Burns M J, Fletcher T D, Walsh C J, Ladson A R, Hatt B E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landscape and Urban Planning, 2012, 105(3): 230–240
CrossRef Google scholar
[13]
Burns M J, Fletcher T D, Duncan H P, Hatt B E, Ladson A R, Walsh C J. The performance of rainwater tanks for stormwater retention and water supply at the household scale: an empirical study. Hydrological Processes, 2015, 29(1): 152–160
CrossRef Google scholar
[14]
Thomas N D, Andrew J R. Municipal Stormwater Management. Washington, DC: Lewis Publishers, 2002.
[15]
Mu H Z, Zheng T, Huang Y C, Zhang C P, Liu C. Reducing non-point source pollution with enhancing infiltration. Journal of Environmental Sciences (China), 2006, 18(1): 115–119
Pubmed
[16]
Murakami M, Sato N, Anegawa A, Nakada N, Harada A, Komatsu T, Takada H, Tanaka H, Ono Y, Furumai H. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration. Water Research, 2008, 42(10-11): 2745–2755
CrossRef Pubmed Google scholar
[17]
Davis A P, Shokouhian M, Sharma H, Minami C. Water quality improvement through bioretention media: nitrogen and phosphorus removal. Water Environment Research, 2006, 78(3): 284–293
CrossRef Pubmed Google scholar
[18]
Chen C F, Lin J Y, Chen Y L. Evaluating LID runoff control efficiency in Taipei Tech Eco-campus with SUSTAIN model. 2013 International Low Impact Development Symposium, 2013. (in Chinese)
[19]
Jia H, Wang X, Ti C, Zhai Y, Field R, Tafuri A N, Cai H, Yu S L. Field monitoring of a LID-BMP treatment train system in China. Environmental Monitoring and Assessment, 2015, 187(6): 373
CrossRef Pubmed Google scholar
[20]
Ihsan M, Setiawan B I, Pandjaitan N H. Design of zero runoff system at IPB Darmaga Campus, Bogor, West Java. Jurnal TeknikSipil Dan Lingkungan, 2016, 1(1): 1–9
[21]
Stevens H. Stormwater Retrofit at Mt. Tabor Middle School: Lessons Learned about Designing Landscape Systems at Schools. International Low Impact Development Conference, 2014(333): 1–10
[22]
Zhao R, Zhang S H, Chen J G. Low-impact development of campus rainwater system application case study. China Flood Control and Drought, 2010, 5 (25): 80–82 (in Chinese)
[23]
Zhao J Q. Urban Surface Runoff Pollution and Control. Beijing: China Environmental Science Press, 2002 (in Chinese)

Acknowledgements

This work was supported by the National Major Science and Technology Program (Grant No. 2013ZX07304-001) and the National Science Foundation of Beijing (Grant No. 8161002).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer–Verlag Berlin Heidelberg
AI Mindmap
PDF(1671 KB)

Accesses

Citations

Detail

Sections
Recommended

/