Design and evaluation of control strategies in urban drainage systems in Kunming city

Xin Dong , Senchen Huang , Siyu Zeng

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 13

PDF (866KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 13 DOI: 10.1007/s11783-017-0968-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Design and evaluation of control strategies in urban drainage systems in Kunming city

Author information +
History +
PDF (866KB)

Abstract

A stepwise design approach for real time control strategy was proposed.

Three typical strategies (static, constant and equal-filling strategy) were studied.

The fourth urban drainage system in Kunming was used for case study.

Equal-filling strategy was found to be able to reduce CSO effectively.

Real time control (RTC) of urban drainage systems (UDSs) is an important measure to reduce combined sewer overflow (CSO) and urban flooding, helping achieve the aims of ‘Sponge City’. Application of RTC requires three main steps: strategy design, simulation-based evaluation and field test. But many of published RTC studies are system-specific, lacking discussions on how to design a strategy step by step. In addition, the existing studies are prone to use hydrologic model to evaluated strategies, but a more precise and dynamic insight into strategy performance is needed. To fill these knowledge gaps, based on a case UDS in Kunming city, a study on RTC strategy design and simulation-based evaluation is performed. Two off-line volume-based RTC strategy design principles, Maximize WWTP inflow and Make full use of space, are emphasized. Following these principles, a detailed design procedure is shown for the case UDS resulting in three RTC strategies: static, constant and equal filling. The proposed strategies are evaluated based on a hydrodynamic model- Storm Water Management Model (SWMM) - under four typical rainfall events characterized by different return periods (1-year or 0.5 year) and different spatial distributions (uniform or uneven). The equal filling strategy outperforms other two strategies and it can achieve 10% more CSO reduction and 5% more flooding reduction relative to the no-tank case.

Graphical abstract

Keywords

Urban drainage system / Real time control / Static strategy / Constant strategy / Equal filling strategy

Cite this article

Download citation ▾
Xin Dong, Senchen Huang, Siyu Zeng. Design and evaluation of control strategies in urban drainage systems in Kunming city. Front. Environ. Sci. Eng., 2017, 11(4): 13 DOI:10.1007/s11783-017-0968-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Butler DDavies J. Urban drainage. Florida: CRC Press, 2004

[2]

IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer, eds. IPCC, Geneva, Switzerland2014, 151

[3]

Office of the State Council in China. Guideline to Promote the Construction of Sponge City, 2015 (in Chinese)

[4]

Chou B. Sponge city: connotation, approaches and prospect. Water & Wastewater Engineering201541(3): 1–7 (in Chinese)

[5]

Schütze MCampisano AColas HSchilling WVanrolleghem P A. Real time control of urban wastewater systems—Where do we stand today? Journal of Hydrology (Amsterdam)2004299(3): 335–348

[6]

U.S. Environmental Protection Agency. Real time control of urban drainage networks. Report No. EPA/600/R-06/120 NTIS PB 20460. Office of Research and Development, Washington, D.C2006

[7]

García LBarreiro-Gomez JEscobar ETéllez DQuijano NOcampo-Martínez C. Modeling and real-time control of urban drainage systems: a review. Advances in Water Resources201585: 120–132

[8]

Pleau MColas HLavallée PPelletier GBonin R. Global optimal real-time control of the Quebec urban drainage system. Environmental Modelling & Software200520(4): 401–413

[9]

Puig VCembrano GRomera JQuevedo JAznar BRamón GCabot J. Predictive optimal control of sewer networks using CORAL tool: application to Riera Blanca catchment in Barcelona. Water Science and Technology200960(4): 869–878

[10]

Kuno KSuzuki T. Availability of CSO control and flood control of real-time control system in urban pumping station. Proceedings of the Water Environment Federation200913(13): 3347–3364

[11]

Fuchs LBeeneken T. Development and implementation of a real-time control strategy for the sewer system of the city of Vienna. Water Science and Technology200552(5): 187–194

[12]

Dirckx GSchütze MKroll SThoeye CDe Gueldre GVan De Steene B. Cost-efficiency of RTC for CSO impact mitigation. Urban Water Journal20118(6): 367–377

[13]

Marinaki MPapageorgiou M. Optimla real-time control of sewer networks. Springer  2005

[14]

Joseph-Duran BOcampo-Martinez CCembrano G. Hybrid modelling and receding horizon control of sewer networks. Water Resources Research201450(11): 8497–8514

[15]

Schütze MButler DBeck B M. Modelling, Simulation and Control of Urban Wastewater Systems. New York: Springer Science & Business Media. 2011.

[16]

Zug MFaure DDe Belly BPhan L. Use of real time control modelling on the urban sewage system of Nancy. Water Science and Technology200144(2-3): 261–268

[17]

Klepiszewski KSchmitt T G. Comparison of conventional rule based flow control with control processes based on fuzzy logic in a combined sewer system. Water Science and Technology200246(6-7): 77–84

[18]

Lacour CJoannis CSchuetze MChebbo G. Efficiency of a turbidity-based, real-time control strategy applied to a retention tank: a simulation study. Water Science and Technology201164(7): 1533–1539

[19]

Weyand M. Real-time control in combined sewer systems in Germany: some case studies. Urban Water20024(4): 347–354

[20]

Borsanyi PBenedetti LDirckx GDe Keyser WMuschalla DSolvi A MVanrolleghem P A. Modelling real-time control options on virtual sewer systems. Journal of Environmental Engineering and Science20087(4): 395–410

[21]

DWA – Deutsche Vereinigung fur Wasserwirtschaft. Abwasser und Abfall e. V. 2005. Handlungsrahmen zur Planung von Abflusssteuerung in Kanalnetzen; Merkblatt DWA-M180. ISBN 3–939057–02–9

[22]

Alex JSchütze MOgurek MJumar U. Systematic Design of Distributed Controllers for Sewer Networks. IFAC Proceedings2008, 41(2), 556–561

[23]

Solvi A M. Modelling the sewer-treatment-urban river system in view of the EU Water Framework Directive. Dissertation for the Doctoral Degree. Ghent: Ghent University, 2007

[24]

van Daal-Rombouts PSun SLangeveld JBertrand-Krajewski J LClemens F. Design and performance evaluation of a simplified dynamic model for combined sewer overflows in pumped sewer systems. Journal of Hydrology (Amsterdam)2016538: 609–624

[25]

Wolfs VWillems P. Development of discharge-stage curves affected by hysteresis using time varying models, model trees and neural networks. Environmental Modelling & Software201455: 107–119

[26]

Rossman L A. Storm water management model user's manual, version 5.0. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency2010

[27]

Chen F. Research on evaluation and optimization of flood and overflow control capacity of urban drainage system. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2016

[28]

Todeschini SPapiri SCiaponi C. Performance of stormwater detention tanks for urban drainage systems in northern Italy. Journal of Environmental Management2012101: 33–45

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (866KB)

3838

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/