Improvement of sludge dewaterability with modified cinder via affecting EPS

Weichao Ma , Lei Zhao , Huiling Liu , Qianliang Liu , Jun Ma

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 19

PDF (811KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 19 DOI: 10.1007/s11783-017-0967-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Improvement of sludge dewaterability with modified cinder via affecting EPS

Author information +
History +
PDF (811KB)

Abstract

The organic matters decreased during the conditioning with cinders.

The modified cinder could improve the dewaterability via affecting EPS.

Variation of EPS disintegrated sludge floc especially for ACMC addition.

ACMC promoted the reconstruction of sludge floc as skeleton builder via adsorption.

The reconstruction mechanisms included charge neutralization, adsorption bridging.

The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L−1, SRF of the sludge decreased from 7.85 × 1012 m·kg−1 to 2.06 × 1012 m·kg−1, and the filter cake moisture decreased from 85% to 60%. The reconstruction of “floc mass” was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.

Graphical abstract

Keywords

Sludge conditioning / Acid or alkali modified cinder / TB-EPS / Floc mass / Floc reconstruction

Cite this article

Download citation ▾
Weichao Ma, Lei Zhao, Huiling Liu, Qianliang Liu, Jun Ma. Improvement of sludge dewaterability with modified cinder via affecting EPS. Front. Environ. Sci. Eng., 2017, 11(6): 19 DOI:10.1007/s11783-017-0967-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mowla DTran H NAllen D G. A review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass and Bioenergy201358(21): 365–378

[2]

Raynaud MVaxelaire JOlivier JDieudé-Fauvel EBaudez J C. Compression dewatering of municipal activated sludge: effects of salt and pH. Water Research201246(14): 4448–4456

[3]

Chen YChen Y SGu G. Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering. Chemical Engineering Journal200499(2): 137–143

[4]

Urbain VBlock J CManem J. Bioflocculation in activated sludge: an analytical approach. Water Research199327(5): 829–838

[5]

Li X YYang S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Research200741(5): 1022–1030

[6]

Lee C HLiu J C. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Research200034(18): 4430–4436

[7]

Saveyn HPauwels GTimmerman RVan der Meeren P. Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase. Water Research200539(13): 3012–3020

[8]

Liu Y LWang LMa JZhao X DHuang Z SMahadevan G DQi J Y. Improvement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solution. Chemical Engineering Journal2016287: 11–18

[9]

Wang L FHe D QTong Z HLi W WYu H Q. Characterization of dewatering process of activated sludge assisted by cationic surfactants. Biochemical Engineering Journal201491: 174–178

[10]

Qi YThapa K BHoadley A F A. Benefit of lignite as a filter aid for dewatering of digested sewage sludge demonstrated in pilot scale trials. Chemical Engineering Journal2011166(2): 504–510

[11]

Qi YThapa K BHoadley A F A. Application of filtration aids for improving sludge dewatering properties –A review. ChemInform201142(41): 373–384

[12]

Benitez JRodriguez ASuarez A. Optimization technique for sewage sludge conditioning with polymer and skeleton builders. Water Research199428(10): 2067–2073

[13]

Yu WYang JShi YSong JShi YXiao JLi CXu XHe SLiang SWu XHu J. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime. Water Research201695: 124–133

[14]

Shi Y FYang J KYu W BZhang S NLiang SSong JXua QYe N. Synergetic conditioning of sewage sludge via Fe2+/persulfate and skeleton builder Effect on sludge characteristics and dewaterability. Chemical Engineering Journal2015270: 572–581

[15]

Thapa K BQi YClayton S AHoadley A F A. Lignite aided dewatering of digested sewage sludge. Water Research200943(3): 623–634

[16]

Skoglunda NBäfverc LFahlströmd JHolméne ERenströmc C. Fuel design in co-combustion of demolition wood chips and municipal sewage sludge. Fuel Processing Technology2016141(1): 196–201

[17]

Yue XLi X MWang D BShen T TLiu XYang QZeng G MLiao D X. Simultaneous phosphate and CODcr removals for landfill leachate using modified honeycomb cinders as an adsorbent. Journal of Hazardous Materials2011190(1-3): 553–558

[18]

Tian WQiao KYu HBai JJin XLiu QZhao J. Remediation of aquaculture water in the estuarine wetlands using coal cinder-zeolite balls/reed wetland combination strategy. Journal of Environmental Management2016181: 261–268

[19]

Huang R YTian W JLiu QYu H BJin XZhao Y GZhou Y HFeng G. Enhanced biodegradation of pyrene and indeno(1,2,3-cd)pyrene using bacteria immobilized in cinder beads in estuarine wetlands. Marine Pollution Bulletin2016102(1): 128–133

[20]

Yang K LYue Q YHan WKong J JGao B YZhao PDuan L. Effect of novel sludge and coal cinder ceramic media in combined anaerobic–aerobic bio-filter for tetracycline wastewater treatment at low temperature. Chemical Engineering Journal2015277: 30–139

[21]

Yang K LYue Q YKong J JZhao PGao YFu K FGao B Y. Microbial diversity in combined UAF–UBAF system with novel sludge and coal cinder ceramic fillers for tetracycline wastewater treatment. Chemical Engineering Journal2016285: 319–330

[22]

Wang SYang JLou S JYang J. Wastewater treatment performance of a vermifilter enhancement by a converter slag–coal cinder filter. Ecological Engineering201036(4): 489–494

[23]

Baig S AZhu JTan L SXue X QSun CXu X H. Influence of calcination on magnetic honeycomb briquette cinders composite for the adsorptive removal of As(III) in fixed-bed column. Chemical Engineering Journal2014257: 1–9

[24]

Zhu JBaig S ASheng TLou ZWang ZXu X. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions. Journal of Hazardous Materials2015286: 220–228

[25]

Chen C YZhang P YZeng G MDeng J HZhou YLu H F. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chemical Engineering Journal2010158(3): 616–622

[26]

Ye F XJi H ZYe Y F. Effect of potassium ferrate on disintegration of waste activated sludge (WAS). Journal of Hazardous Materials2012219–220(12): 164–168

[27]

Wang SBoyjoo YChoueib A. A comparative study of dye removal using fly ash treated by different methods. Chemosphere200560(10): 1401–1407

[28]

Pengthamkeerati PSatapanajaru TChularuengoaksorn P. Chemical modification of coal fly ash for the removal of phosphate from aqueous solution. Fuel200887(12): 2469–2476

[29]

Lin BLi S PHou X JLi H Q. Preparation of high performance mullite ceramics from high-aluminum fly ash by an effective method. Journal of Alloys and Compounds2015623: 359–361

[30]

Zhang B HWu D YWang CHe S BZhang Z JKong H N. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment. Journal of Environmental Sciences (China)200719(5): 540–545

[31]

Mikkelsen L HKeiding K. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Research200236(10): 2451–2462

[32]

Zhang W JCao B DWang D SMa TYu D H. Variations in distribution and composition of extracellular polymeric substances (EPS) of biological sludge under potassium ferrate conditioning: effects of pH and ferrate dosage. Biochemical Engineering Journal2016106: 37–47

[33]

Chen YYang HGu G. Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Research200135(11): 2615–2620

[34]

Xiang Y LWang L PJiao Y R. Disintegration of excess sludge enhanced by a combined treatment of gamma irradiation and modified coal fly ash. Radiation Physics and Chemistry2016120(March): 49–55

[35]

Stellacci PLiberti LNotarnicol MBishop P L. Valorization of coal fly ash by mechano-chemical activation: Part II. Enhancing pozzolanic reactivity. Chemical Engineering Journal2009149(1–3): 19–24

[36]

Liu YFang H H P. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Critical Reviews in Environmental Science and Technology200333(3): 237–273

[37]

Wakeman R J. Separation technologies for sludge dewatering. Journal of Hazardous Materials2007144(3): 614–619

[38]

Li W WYu H Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresource Technology2014160(2): 15–23

[39]

Tang LLi L QChen R FWang C HMa W WMa X C. Adsorption of acetone and isopropanol on organic acid modified activated carbons. Journal of Environmental Chemical Engineering20164(2): 2045–2051

[40]

Sveegaard S GKeiding KChristensen M L. Compression and swelling of activated sludge cakes during dewatering. Water Research201246(16): 4999–5008

[41]

Christensen M LKeiding KNielsen P HJørgensen M K. Dewatering in biological wastewater treatment: a review. Water Research201582(3): 14–24

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (811KB)

Supplementary files

FSE-17069-OF-MWC_suppl_1

1899

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/