Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example

Bai-Hang Zhao , Jie Chen , Han-Qing Yu , Zhen-Hu Hu , Zheng-Bo Yue , Jun Li

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 17

PDF (461KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 17 DOI: 10.1007/s11783-017-0965-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example

Author information +
History +
PDF (461KB)

Abstract

The physical structure of hyacinth was disrupted by microwave pretreatment.

Methane production increased by 38.3% with microwave pretreatment.

The maximum methane production and maximum methane production rate were optimized.

Mechanism of enhanced methane production by microwave pretreatment was analyzed.

The effect of microwave pretreatment on the anaerobic degradation of hyacinth was investigated using response surface methodology (RSM). The components of lignin and the other constituents of hyacinth were altered by microwave pretreatment. Comparison of the near-infrared spectra of hyacinth pretreated by microwave irradiation and water-heating pretreatment revealed that no new compounds were generated during hyacinth pretreatment by microwave irradiation. Atomic force microscopy observations indicated that the physical structures of hyacinth were disrupted by microwave pretreatment. The yield of methane per gram of the microwave-irradiated substrate increased by 38.3% as compared to that of the substrate pretreated via water-heating. A maximum methane yield of 221 mL·g-sub–1 was obtained under the optimum pretreatment conditions (substrate concentration (PSC) = 20.1 g·L–1 and pretreatment time (PT) = 14.6 min) using RSM analysis. A maximum methane production rate of 0.76 mL·h–1·g-sub–1 was obtained by applying PSC= 9.5 g·L–1 and PT= 11 min. Interactive item coefficient analysis showed that methane production was dependent on the PSC and PT, separately, whereas the interactive effect of the PSC and PT on methane production was not significant. The same trend was also observed for the methane production rate.

Graphical abstract

Keywords

Microwave pretreatment / Response surface methodology / Methane production / Hyacinth / Anaerobic digestion

Cite this article

Download citation ▾
Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example. Front. Environ. Sci. Eng., 2017, 11(6): 17 DOI:10.1007/s11783-017-0965-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hallin SHellman  MChoudhury M I Ecke F. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands. Water Research201585: 377–383

[2]

Singh JKalamdhad  A S. Effect of lime on speciation of heavy metals during composting of water hyacinth. Frontiers of Environmental Science & Engineering201610(1): 93–102

[3]

Toyama TNishimura  YOgata Y Sei KMori  KIke M . Effects of planting Phragmites australis on nitrogen removal, microbial nitrogen cycling, and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments. Environmental Technology201537(4): 1–8

[4]

Lyubenova LSchröder  P. Plants for waste water treatment—effects of heavy metals on the detoxification system of Typha latifolia. Bioresource Technology2011102(2): 996–1004

[5]

Woon K SLo  I M C. A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong. Waste Management (New York, N.Y.)201647(Pt A): 3–10

[6]

Spears B MMackay  E BYasseri  SGunn I D Waters K E Andrews C Cole SDe Ville  MKelly A Meis SMoore  A LNürnberg  G Kvan Oosterhout  FPitt J A Madgwick G Woods H J Lürling M . A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock(®)). Water Research201697: 111–121160;doi:10.1016/j.watres.2015.08.020

[7]

De Philippis R . Biotech for bioenergy. Process Biochemistry201247(11): 1563–1563

[8]

Climent MFerrer  IBaeza M D Artola A Vazquez F Font X. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal2007133(1–3): 335–342

[9]

Park BAhn  J HKim  JHwang S . Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge. Water Science Technology200450(9): 17–23

[10]

Saha MEskicioglu  CMarin J . Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresource Technology2011102(17): 7815–7826

[11]

Taherzadeh M J Karimi K . Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences20089(9): 1621–1651

[12]

Zhao B HYue  Z BNi  B JMu  YYu H Q Harada H . Modeling anaerobic digestion of aquatic plants by rumen cultures: cattail as an example. Water Research200943(7): 2047–2055160;doi:10.1016/j.watres.2009.02.006

[13]

Wu C HZhou  HYang F Y Zhang Y W Gao F Q . Microwave pretreatments of switchgrass leaf and stem fractions to increase methane production. BioResources201510(3): 3922–3933

[14]

Jackowiak DFrigon  J CRibeiro  TPauss A Guiot S . Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresource Technology2011102(3): 3535–3540

[15]

Ferreira L CNilsen  P JFdz-Polanco  FPerez-Elvira S I . Biomethane potential of wheat straw: influence of particle size, water impregnation and thermal hydrolysis. Chemical Engineering Journal2014242: 254–259

[16]

Theuretzbacher FLizasoain  JLefever C Saylor M K Enguidanos R Weran N Gronauer A Bauer A . Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion. Bioresource Technology2015179: 299–305

[17]

Monlau FLatrille  EDa Costa A C SteyerJ P Carrère H . Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Applied Energy2013102: 1105–1113

[18]

Zhu S DWu  Y XYu  Z NLiao  J TZhang  Y. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry200540(9): 3082–3086

[19]

Zhou SLiu  LWang B Xu FSun  R C. Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study. Process Biochemistry201247(12): 1799–1806

[20]

Li LKong  XYang F Li DYuan  ZSun Y . Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Applied Biochemistry and Biotechnology2012166(5): 1183–1191

[21]

Kitchaiya PIntanakul  PKrairiksh M . Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric-pressure. Journal of Wood Chemistry and Technology200323(2): 217–225

[22]

Hu Z HYue  Z BYu  H QLiu  S YHarada  HLi Y Y . Mechanisms of microwave irradiation pretreatment for enhancing anaerobic digestion of cattail by rumen microorganisms. Applied Energy201293: 229–236

[23]

Su H BCheng  JZhou J H Song W L Cen K F . Hydrogen production from water hyacinth through dark- and photo-fermentation. International Journal of Hydrogen Energy201035(17): 8929–8937

[24]

Ding L KCheng  JYue L C Liu J Z Zhang L Zhou J H Cen K F . Fermentative hydrogen and methane co-production from pretreated Spartina anglica biomass with optimal saccharification effect under acid/alkali-assisted steam/microwave heating and enzymolysis. Energy Conversion and Management2016127: 554–560

[25]

Cheng JLin  R CSong  W LXia  AZhou J H Cen K F . Enhancement of fermentative hydrogen production from hydrolyzed water hyacinth with activated carbon detoxification and bacteria domestication. International Journal of Hydrogen Energy201540(6): 2545–2551

[26]

Cheng JXia  ASu H B Song W L Zhou J H Cen K F . Promotion of H2 production by microwave-assisted treatment of water hyacinth with dilute H2SO4 through combined dark fermentation and photofermentation. Energy Conversion and Management201373: 329–334 doi:10.1016/j.enconman.2013.05.018

[27]

Lin RCheng  JSong W Ding LXie  BZhou J Cen K. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation. Bioresource Technology2015182: 1–7

[28]

Wasser S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology200260(3): 258–274

[29]

Xie YChen  LLiu R . Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system. Chemosphere2016155: 217–224

[30]

Guo YWu  C FWang  Q HYang  MHuang Q Q Magep M Zheng T L . Wastewater-nitrogen removal using polylactic acid/starch as carbon source: optimization of operating parameters using response surface methodology. Frontiers of Environmental Science & Engineering201610(4): 6

[31]

APHA A, WEF. Standard Methods for the Examination of Water and Wastewater, 19th ed. Washington, DC: American Public Health Association, 1995

[32]

de la Hoz A Díaz-Ortiz A Moreno A . Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews200534(2): 164–178 PMID:15672180 doi:10.1039/B411438H

[33]

Lestander T A Samuelsson R . Prediction of resin and fatty acid content of biorefinery feedstock by on-line near-infrared (NIR) spectroscopy. Energy & Fuels201024(9): 5148–5152

[34]

Zhao YLu  W JChen  J JZhang  X FWang  H T. Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste. Frontiers of Environmental Science & Engineering20148(2): 151–161

[35]

Hu Z HWen  Z Y. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal200838(3): 369–378

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (461KB)

2424

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/