Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters

Qiang He , Yinying Zhu , Guo Li , Leilei Fan , Hainan Ai , Xiaoliu Huangfu , Hong Li

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 16

PDF (391KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 16 DOI: 10.1007/s11783-017-0964-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters

Author information +
History +
PDF (391KB)

Abstract

The dominant Cloacibacterium normanense may be responsible for N2O production.

N2O concentrations varied along the biofilm depth depending on the DO levels.

Low DO concentration leads to high N2O production rate.

Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were employed to evaluate the Nitrous oxide (N2O) production in biological aerated filters (BAFs) under varied dissolved oxygen (DO) concentrations during treating wastewater under laboratory scale. The average yield of gasous N2O showed more than 4-fold increase when the DO levels were reduced from 6.0 to 2.0 mg·L1, indicating that low DO may drive N2O generation. PCR-DGGE results revealed that Nitratifractor salsuginis were dominant and may be responsible for N2O emission from the BAFs system. While at a low DO concentration (2.0 mg·L1), Flavobacterium urocaniciphilum might play a role. When DO concentration was the limiting factor (reduced from 6.0 to 2.0 mg·L1) for nitrification, it reduced NO2-N oxidation as well as the total nitrification. The data from this study contribute to explain how N2O production changes in response to DO concentration, and may be helpful for reduction of N2O through regulation of DO levels.

Graphical abstract

Keywords

Nitrous oxide / Biological aerated filter / Microelectrode / Dissolved oxygen / Biofilm

Cite this article

Download citation ▾
Qiang He, Yinying Zhu, Guo Li, Leilei Fan, Hainan Ai, Xiaoliu Huangfu, Hong Li. Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters. Front. Environ. Sci. Eng., 2017, 11(6): 16 DOI:10.1007/s11783-017-0964-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Garrido J Mvan Benthum W Avan Loosdrecht M CHeijnen J J. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering199753(2): 168–178

[2]

Osada TShiraishi MHasegawa TKawahara H. Methane, nitrous oxide and ammonia generation in full-scale swine wastewater purification facilities. Frontiers of Environmental Science & Engineering201711(3): 10–17

[3]

Wunderlin PMohn JJoss AEmmenegger LSiegrist H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research201246(4): 1027–1037

[4]

Tsuneda SMikami MKimochi YHirata A. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater. Journal of Hazardous Materials2005119(1–3): 93–98

[5]

Wan TZhang GDu FHe JWu P. Combined biologic aerated filter and sulfur/ceramisite autotrophic denitrification for advanced wastewater nitrogen removal at low temperatures. Frontiers of Environmental Science & Engineering20148(6): 967–972

[6]

Wang YFang HZhou DHan HChen J. Characterization of nitrous oxide and nitric oxide emissions from a full-scale biological aerated filter for secondary nitrification. Chemical Engineering Journal2016299: 304–313

[7]

Peng LNi B JErler DYe LYuan Z. The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge. Water Research201466: 12–21

[8]

Aboobakar ACartmell EStephenson TJones MVale PDotro G. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant. Water Research201347(2): 524–534

[9]

Eldyasti ANakhla GZhu J. Mitigation of nitrous oxide (N2O) emissions from denitrifying fluidized bed bioreactors (DFBBRs) using calcium. Bioresource Technology2014173: 272–283

[10]

Sabba FPicioreanu CPérez JNerenberg R. Hydroxylamine diffusion can enhance N2O emissions in nitrifying biofilms: a modeling study. Environmental Science & Technology201549(3): 1486–1494

[11]

Ray RHenshaw PBiswas N. Effects of reduced aeration in a biological aerated filter. Canadian Journal of Civil Engineering201239(4): 432–438

[12]

Okabe SOshiki MTakahashi YSatoh H. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules. Water Research201145(19): 6461–6470

[13]

Rathnayake R M L DOshiki MIshii SSegawa TSatoh HOkabe S. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules. Bioresource Technology2015197: 15–22

[14]

Lv YChen XWang LJu KChen XMiao RWang X. Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor. Frontiers of Environmental Science & Engineering201610(2): 390–398

[15]

Hao XHeijnen J Jvan Loosdrecht M C M. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnology and Bioengineering200277(3): 266–277

[16]

APHA. Standard Methods for the Examination of Water and Wastewater. Washington, DC, USA: American Public Health Association, 2005

[17]

Egli KBosshard FWerlen CLais PSiegrist HZehnder A J BVan der Meer J R. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microbial Ecology200345(4): 419–432

[18]

Ji GTong JTan Y. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresource Technology2011102(2): 550–557

[19]

Gieseke ABeer D D. Use of microelectrodes to measure in situ microbial activities in biofilms, sediments, and microbial mats. In: Kowalchuk G G, Bruijn F J, Head I M, Akkermans A D, Elsas J D V, eds. Molecular Microbial Ecology Manual, 2nd ed. Heidelberg: Springer Netherlands, 2004

[20]

Bollon JFilali AFayolle YGuerin SRocher VGillot S. N2O emissions from full-scale nitrifying biofilters. Water Research2016102: 41–51

[21]

Li XSun SBadgley B DSung SZhang HHe Z. Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor. Water Research201694: 23–31

[22]

Joo S HKim D JYoo I KPark KCha G C. Partial nitrification in an upflow biological aerated filter by O2 limitation. Biotechnology Letters200022(11): 937–940

[23]

Pynaert KSprengers RLaenen JVerstraete W. Oxygen-limited nitrification and denitrification in a lab-scale rotating biological contactor. Environmental Technology200223(3): 353–362

[24]

Albuquerque AMakinia JPagilla K. Impact of aeration conditions on the removal of low concentrations of nitrogen in a tertiary partially aerated biological filter. Ecological Engineering201244: 44–52

[25]

Desloover JDe Clippeleir HBoeckx PDu Laing GColsen JVerstraete WVlaeminck S E. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Research201145(9): 2811–2821

[26]

Li QSun SGuo TYang CSong CGeng WZhang WFeng JWang S. Short-cut nitrification in biological aerated filters with modified zeolite and nitrifying sludge. Bioresource Technology2013136(3): 148–154

[27]

Wang J YXiong Z QYan X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmospheric Environment201145(38): 6923–6929

[28]

Ahn J HKim SPark HRahm BPagilla KChandran K. N2O emissions from activated sludge processes, 2008–2009: results of a national monitoring survey in the United States. Environmental Science & Technology201044(12): 4505–4511

[29]

Kampschreur M Jvan der Star W R LWielders H AMulder J WJetten M S Mvan Loosdrecht M C M. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research200842(3): 812–826

[30]

Jun YWenfeng X. Ammonia biofiltration and community analysis of ammonia-oxidizing bacteria in biofilters. Bioresource Technology2009100(17): 3869–3876

[31]

Frutos O DQuijano GPérez RMuñoz R. Simultaneous biological nitrous oxide abatement and wastewater treatment in a denitrifying off-gas bioscrubber. Chemical Engineering Journal2016288: 28–37

[32]

Garrido J Mvan Benthum W A Jvan Loosdrecht M C MHeijnen J J. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering199753(2): 168–178

[33]

Kampschreur M JTemmink HKleerebezem RJetten M S Mvan Loosdrecht M C M. Nitrous oxide emission during wastewater treatment. Water Research200943(17): 4093–4103

[34]

Peng LLiu YNi B J. Nitrous oxide production in completely autotrophic nitrogen removal biofilm process: a simulation study. Chemical Engineering Journal2016287: 217–224

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (391KB)

2333

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/