Recovery of rare and precious metals from urban mines—A review

Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li

PDF(1463 KB)
PDF(1463 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 1. DOI: 10.1007/s11783-017-0963-1
FEATURE ARTICLE
FEATURE ARTICLE

Recovery of rare and precious metals from urban mines—A review

Author information +
History +

Highlights

Distribution characteristics of various RPMs in urban mines are summarized.

Conventional and emerging RPM recycling technologies are reviewed systematically.

Advantages and shortcomings of various technologies are discussed and highlighted.

Abstract

Urban mining is essential for continued natural resource extraction. The recovery of rare and precious metals (RPMs) from urban mines has attracted increasing attention from both academic and industrial sectors, because of the broad application and high price of RPMs, and their low content in natural ores. This study summarizes the distribution characteristics of various RPMs in urban mines, and the advantages and shortcomings of various technologies for RPM recovery from urban mines, including both conventional (pyrometallurgical, hydrometallurgical, and biometallurgical processing), and emerging (electrochemical, supercritical fluid, mechanochemical, and ionic liquids processing) technologies. Mechanical/physical technologies are commonly employed to separate RPMs from nonmetallic components in a pre-treatment process. A pyrometallurgical process is often used for RPM recovery, although the expensive equipment required has limited its use in small and medium-sized enterprises. Hydrometallurgical processing is effective and easy to operate, with high selectivity of target metals and high recovery efficiency of RPMs, compared to pyrometallurgy. Biometallurgy, though, has shown the most promise for leaching RPMs from urban mines, because of its low cost and environmental friendliness. Newly developed technologies—electrochemical, supercritical fluid, ionic liquid, and mechanochemical—have offered new choices and achieved some success in laboratory experiments, especially as efficient and environmentally friendly methods of recycling RPMs. With continuing advances in science and technology, more technologies will no doubt be developed in this field, and be able to contribute to the sustainability of RPM mining.

Graphical abstract

Keywords

Rare and precious metals (RPMs) / Distribution characteristics / Recycling technology / Emerging technology / Supercritical fluid

Cite this article

Download citation ▾
Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li. Recovery of rare and precious metals from urban mines—A review. Front. Environ. Sci. Eng., 2017, 11(5): 1 https://doi.org/10.1007/s11783-017-0963-1

References

[1]
Zhou T, Goldfarb R J, Phillips N G. Tectonics and distribution of gold deposits in China: an overview. Mineralium Deposita, 2002, 37(3): 249–282
CrossRef Google scholar
[2]
Pirajno F, Bagas L. Gold and silver metallogeny of the South China Fold Belt: a consequence of multiple mineralizing events? Ore Geology Reviews, 2002, 20(3): 109–126
CrossRef Google scholar
[3]
Huang K, Guo J, Xu Z. Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. Journal of Hazardous Materials, 2009, 164(2–3): 399–408
CrossRef Google scholar
[4]
Akcil A, Erust C, Gahan C S, Ozgun M, Sahin M, Tuncuk A. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants: a review. Waste Management (New York, N.Y.), 2015, 45: 258–271
CrossRef Google scholar
[5]
Kim C H, Woo S I, Jeon S H. Recovery of platinum-group metals from recycled automotive catalytic converters by carbochlorination. Industrial & Engineering Chemistry Research, 2000, 39(5): 1185–1192
CrossRef Google scholar
[6]
Glaister B J, Mudd G M. The environmental costs of platinum–PGM mining and sustainability: Is the glass half-full or half-empty? Minerals Engineering, 2010, 23(5): 438–450
CrossRef Google scholar
[7]
Xiao Z, Laplante A R. Characterizing and recovering the platinum group minerals: a review. Minerals Engineering, 2004, 17(9–10): 961–979
CrossRef Google scholar
[8]
Muchova L, Bakker E, Rem P. Precious metals in municipal solid waste incineration bottom ash. Water Air and Soil Pollution Focus, 2008, 9(1–2): 107–116
[9]
Wei S, Liu J, Zhang S, Chen X, Liu Q, Zhu L, Guo L, Liu X. Stoichiometry, isotherms and kinetics of adsorption of In(III) on Cyanex 923 impregnated HZ830 resin from hydrochloric acid solutions. Hydrometallurgy, 2016, 164: 219–227
CrossRef Google scholar
[10]
Font O, Querol X, Juan R, Casado R, Ruiz C R, Lopez-Soler A, Coca P, Garcia Pena F. Recovery of gallium and vanadium from gasification fly ash. Journal of Hazardous Materials, 2007, 139(3): 413–423
CrossRef Google scholar
[11]
Gupta B, Mudhar N, Begum Z, Singh I. Extraction and recovery of Ga(III) from waste material using Cyanex 923. Hydrometallurgy, 2007, 87(1–2): 18–26
CrossRef Google scholar
[12]
Wang A, Wang Y, Kabe T, Chen Y, Ishihara A, Qian W. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts. Journal of Catalysis, 2001, 199(1): 19–29
CrossRef Google scholar
[13]
Song C, Reddy K M. Mesoporous molecular sieve MCM-41 supported Co–Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels. Applied Catalysis A, General, 1999, 176(1): 1–10
CrossRef Google scholar
[14]
Duan H, Wang J, Liu L, Huang Q, Li J. Rethinking China’s strategic mineral policy on indium: implication for the flat screens and photovoltaic industries. Progress in Photovoltaics: Research and Applications, 2016, 24(1): 83–93
CrossRef Google scholar
[15]
Scrosati B, Garche J. Lithium batteries: status, prospects and future. Journal of Power Sources, 2010, 195(9): 2419–2430
CrossRef Google scholar
[16]
Guo X, Liu J, Qin H, Liu Y, Tian Q, Li D. Recovery of metal values from waste printed circuit boards using an alkali fusion–leaching–separation process. Hydrometallurgy, 2015, 156: 199–205
CrossRef Google scholar
[17]
Alfantazi A M, Moskalyk R R. Processing of indium: a review. Minerals Engineering, 2003, 16(8): 687–694
CrossRef Google scholar
[18]
Li J. Wastes could be resources and cities could be mines. Waste Management & Research, 2015, 33(4): 301–302
CrossRef Google scholar
[19]
Binnemans K, Jones P T, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M. Recycling of rare earths: a critical review. Journal of Cleaner Production, 2013, 51: 1–22
CrossRef Google scholar
[20]
Zhang L, Xu Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, 2016, 127: 19–36
CrossRef Google scholar
[21]
Zeng X, Zheng L, Xie H, Lu B, Xia K, Chao K, Li W, Yang J, Lin S, Li J. Current status and future perspective of waste printed circuit boards recycling. Procedia Environmental Sciences, 2012, 16: 590–597
CrossRef Google scholar
[22]
Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
CrossRef Google scholar
[23]
Reddi G S, Rao C R M. Analytical techniques for the determination of precious metals in geological and related materials. Analyst (London), 1999, 124(11): 1531–1540
CrossRef Google scholar
[24]
Zhang J F, Zhou Y, Yoon J, Kim J S. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chemical Society Reviews, 2011, 40(7): 3416–3429
CrossRef Google scholar
[25]
Kumar V, Lee J C, Jeong J, Jha M K, Kim B S, Singh R. Recycling of printed circuit boards (PCBs) to generate enriched rare metal concentrate. Journal of Industrial and Engineering Chemistry, 2015, 21: 805–813
CrossRef Google scholar
[26]
Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256
CrossRef Google scholar
[27]
Zeng X, Wang F, Sun X, Li J. Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1306–1312
CrossRef Google scholar
[28]
Zeng X, Li J, Singh N. Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129–1165
CrossRef Google scholar
[29]
Zeng X, Gong R, Chen W Q, Li J. Uncovering the recycling potential of “new” WEEE in China. Environmental Science & Technology, 2016, 50(3): 1347–1358
CrossRef Google scholar
[30]
Zeng X, Li J, Liu L. Solving spent lithium-ion battery problems in China: opportunities and challenges. Renewable & Sustainable Energy Reviews, 2015, 52: 1759–1767
CrossRef Google scholar
[31]
Li J, Shi P, Wang Z, Chen Y, Chang C C. A combined recovery process of metals in spent lithium-ion batteries. Chemosphere, 2009, 77(8): 1132–1136
CrossRef Google scholar
[32]
Zeng X, Li J, Ren Y.Prediction of various discarded lithium batteries in China. In: 2012 IEEE International Symposium on Sustainable Systems and Technology (ISSST). Beijing: IEEE, 2012,1–4
[33]
Xu J, Thomas H R, Francis R W, Lum K R, Wang J, Liang B. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 2008, 177(2): 512–527
CrossRef Google scholar
[34]
Stevels A, Huisman J, Wang F, Li J, Li B, Duan H. Take back and treatment of discarded electronics: a scientific update. Frontiers of Environmental Science & Engineering, 2013, 7(4): 475-482
CrossRef Google scholar
[35]
Zeng X, Li J. Implications for the carrying capacity of lithium reserve in China. Resources, Conservation and Recycling, 2013, 80: 58–63
CrossRef Google scholar
[36]
Jian C, Jisheng Y, Youyuan Z, Zhifei C, Xi W, Junwu H.Recovery indium from waster ITO target. Chinese Journal of Rare Metals, 2003, 1: 023 (in Chinese)
[37]
Lee C H, Jeong M K, Fatih Kilicaslan M, Lee J H, Hong H S, Hong S J. Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM. Waste Management (New York, N.Y.), 2013, 33(3): 730–734
CrossRef Google scholar
[38]
Ivanovic S Z, Trujuc V K, Gorgievski M D, Misic L D, Bozic D S. Removal of platinum group metals (PGMs) from the spent automobile catalyst by the pyrometallurgical process. In: Ekinovi S, Calvet J V, Tacer E, eds. Trends in the Development of Machinery and Associated Technology. Prague: TMT2011, 2011, 701
[39]
Sun F, Wu W, Wu Z, Guo J, Wei Z, Yang Y, Jiang Z, Tian F, Li C. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and NiMoP catalysts. Journal of Catalysis, 2004, 228(2): 298–310
CrossRef Google scholar
[40]
Shabaker J. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. Journal of Catalysis, 2003, 215(2): 344–352
CrossRef Google scholar
[41]
Yang Z, Rui-lin M, Wang-dong N, Hui W. Selective leaching of base metals from copper smelter slag. Hydrometallurgy, 2010, 103(1–4): 25–29
CrossRef Google scholar
[42]
Cui J, Forssberg E. Mechanical recycling of waste electric and electronic equipment: a review. Journal of Hazardous Materials, 2003, 99(3): 243–263
CrossRef Google scholar
[43]
Yoo J M, Jeong J, Yoo K, Lee J, Kim W. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill. Waste Management (New York, N.Y.), 2009, 29(3): 1132–1137
CrossRef Google scholar
[44]
Lee J C, Song H T, Yoo J M. Present status of the recycling of waste electrical and electronic equipment in Korea. Resources, Conservation and Recycling, 2007, 50(4): 380–397
CrossRef Google scholar
[45]
Zhou Y, Qiu K. A new technology for recycling materials from waste printed circuit boards. Journal of Hazardous Materials, 2010, 175(1–3): 823–828
CrossRef Google scholar
[46]
Hagelüken C, Corti C W. Recycling of gold from electronics: cost-effective use through “Design for Recycling”. Gold Bulletin, 2010, 43(3): 209–220
CrossRef Google scholar
[47]
Li J, Wang G, Xu Z. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. Journal of Hazardous Materials, 2016, 302: 97–104
CrossRef Google scholar
[48]
Ma E, Lu R, Xu Z. An efficient rough vacuum-chlorinated separation method for the recovery of indium from waste liquid crystal display panels. Green Chemistry, 2012, 14(12): 3395
CrossRef Google scholar
[49]
Kakumazaki J, Kato T, Sugawara K. Recovery of gold from incinerated sewage sludge ash by chlorination. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2297–2300
CrossRef Google scholar
[50]
Tuncuk A, Stazi V, Akcil A, Yazici E Y, Deveci H. Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Minerals Engineering, 2012, 25(1): 28–37
CrossRef Google scholar
[51]
Sun L, Qiu K. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Management (New York, N.Y.), 2012, 32(8): 1575–1582
CrossRef Google scholar
[52]
Li L, Qu W, Zhang X, Lu J, Chen R, Wu F, Amine K. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources, 2015, 282: 544–551
CrossRef Google scholar
[53]
Zeng X, Li J, Shen B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of Hazardous Materials, 2015, 295: 112–118
CrossRef Google scholar
[54]
Nayaka G P, Pai K V, Santhosh G, Manjanna J. Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy, 2016, 161: 54–57
CrossRef Google scholar
[55]
Nguyen T H, Sonu C H, Lee M S. Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy, 2016, 164: 71–77
CrossRef Google scholar
[56]
Zhang Z, Zhang F S. Selective recovery of palladium from waste printed circuit boards by a novel non-acid process. Journal of Hazardous Materials, 2014, 279: 46–51
CrossRef Google scholar
[57]
Lee J Y, Raju B, Kumar B N, Kumar J R, Park H K, Reddy B R. Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst. Separation and Purification Technology, 2010, 73(2): 213–218
CrossRef Google scholar
[58]
Chen X, Xu B, Zhou T, Liu D, Hu H, Fan S. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Separation and Purification Technology, 2015, 144: 197–205
CrossRef Google scholar
[59]
Banda R, Sohn S H, Lee M S. Process development for the separation and recovery of Mo and Co from chloride leach liquors of petroleum refining catalyst by solvent extraction. Journal of Hazardous Materials, 2012, 213–214: 1–6
CrossRef Google scholar
[60]
Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides: a review. Hydrometallurgy, 2006, 84(1–2): 81–108
CrossRef Google scholar
[61]
Zhao L, Wang L, Yang D, Zhu N. Bioleaching of spent Ni-Cd batteries and phylogenetic analysis of an acidophilic strain in acidified sludge. Frontiers of Environmental Science & Engineering in China, 2007, 1(4): 459-465 doi:10.1007/s11783-007-0073-6
[62]
Faramarzi M A, Stagars M, Pensini E, Krebs W, Brandl H. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. Journal of Biotechnology, 2004, 113(1–3): 321–326
CrossRef Google scholar
[63]
Brandl H, Bosshard R, Wegmann M. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 2001, 59(2–3): 319–326
CrossRef Google scholar
[64]
Brandl H, Lehmann S, Faramarzi M A, Martinelli D. Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy, 2008, 94(1–4): 14–17
CrossRef Google scholar
[65]
Gadd G M. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2009, 84(1): 13–28
CrossRef Google scholar
[66]
Gadd G M, Yao Q, Zhang H, Wu J, Shao L, He P. Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies.  Frontiers of Environmental Science & Engineering in China, 2010, 4(3): 286–294doi:10.1007/s11783-013-0484-5
[67]
Das N. Recovery of precious metals through biosorption — A review. Hydrometallurgy, 2010, 103(1–4): 180–189
CrossRef Google scholar
[68]
Mata Y N, Torres E, Blazquez M L, Ballester A, Gonzalez F, Munoz J A. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 2009, 166(2–3): 612–618
CrossRef Google scholar
[69]
Won S W, Mao J, Kwak I S, Sathishkumar M, Yun Y S. Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresource Technology, 2010, 101(4): 1135–1140
CrossRef Google scholar
[70]
Won S W, Kotte P, Wei W, Lim A, Yun Y S. Biosorbents for recovery of precious metals. Bioresource Technology, 2014, 160: 203–212
CrossRef Google scholar
[71]
Won S W, Kwak I S, Yun Y S. The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresource Technology, 2014, 160: 93–97
CrossRef Google scholar
[72]
Lister T E, Wang P, Anderko A. Recovery of critical and value metals from mobile electronics enabled by electrochemical processing. Hydrometallurgy, 2014, 149: 228–237
CrossRef Google scholar
[73]
Oishi T, Koyama K, Alam S, Tanaka M, Lee J C. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions. Hydrometallurgy, 2007, 89(1–2): 82–88
CrossRef Google scholar
[74]
Oishi T, Yaguchi M, Koyama K, Tanaka M, Lee J C. Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis. Electrochimica Acta, 2008, 53(5): 2585–2592
CrossRef Google scholar
[75]
Kim E Y, Kim M, Lee J, Jha M K, Yoo K, Jeong J. Effect of cuprous ions on Cu leaching in the recycling of waste PCBs, using electro-generated chlorine in hydrochloric acid solution. Minerals Engineering, 2008, 21(1): 121–128
CrossRef Google scholar
[76]
Kim E Y, Kim M, Lee J, Yoo K, Jeong J. Leaching behavior of copper using electro-generated chlorine in hydrochloric acid solution. Hydrometallurgy, 2010, 100(3–4): 95–102
CrossRef Google scholar
[77]
Kim E Y, Kim M, Lee J, Pandey B D. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. Journal of Hazardous Materials, 2011, 198: 206–215
CrossRef Google scholar
[78]
Myoung J, Jung Y, Lee J, Tak Y. Cobalt oxide preparation from waste LiCoO2 by electrochemical–hydrothermal method. Journal of Power Sources, 2002, 112(2): 639–642
CrossRef Google scholar
[79]
Teoh W H, Mammucari R, Foster N R. Solubility of organometallic complexes in supercritical carbon dioxide: a review. Journal of Organometallic Chemistry, 2013, 724: 102–116
CrossRef Google scholar
[80]
Herrero M, Mendiola J A, Cifuentes A, Ibáñez E. Supercritical fluid extraction: recent advances and applications. Journal of Chromatography. A, 2010, 1217(16): 2495–2511
CrossRef Google scholar
[81]
Erkey C. Supercritical carbon dioxide extraction of metals from aqueous solutions: a review. Journal of Supercritical Fluids, 2000, 17(3): 259–287
CrossRef Google scholar
[82]
Liu K, Zhang Z, Zhang F S. Direct extraction of palladium and silver from waste printed circuit boards powder by supercritical fluids oxidation-extraction process. Journal of Hazardous Materials, 2016, 318: 216–223
CrossRef Google scholar
[83]
Xiu F R, Qi Y, Zhang F S. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Management (New York, N.Y.), 2015, 41: 134–141
CrossRef Google scholar
[84]
Liu K, Zhang F S. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water. Journal of Hazardous Materials, 2016, 316: 19–25
CrossRef Google scholar
[85]
Xiu F R, Qi Y, Zhang F S. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. Waste Management (New York, N.Y.), 2013, 33(5): 1251–1257
CrossRef Google scholar
[86]
Xing M, Zhang F S. Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments. Chemical Engineering Journal, 2013, 219: 131–136
CrossRef Google scholar
[87]
Nasser A, Mingelgrin U. Mechanochemistry: a review of surface reactions and environmental applications. Applied Clay Science, 2012, 67–68: 141–150
CrossRef Google scholar
[88]
Friščić T. New opportunities for materials synthesis using mechanochemistry. Journal of Materials Chemistry, 2010, 20(36): 7599
CrossRef Google scholar
[89]
James S L, Adams C J, Bolm C, Braga D, Collier P, Friscic T, Grepioni F, Harris K D, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen A G, Parkin I P, Shearouse W C, Steed J W, Waddell D C. Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 2012, 41(1): 413–447
CrossRef Google scholar
[90]
Zhang Q, Saeki S, Tanaka Y, Kano J, Saito F. A soft-solution process for recovering rare metals from metal/alloy-wastes by grinding and washing with water. Journal of Hazardous Materials, 2007, 139(3): 438–442
CrossRef Google scholar
[91]
Yuan W, Li J, Zhang Q, Saito F. Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass. Environmental Science & Technology, 2012, 46(7): 4109–4114
CrossRef Google scholar
[92]
Wang M M, Zhang C C, Zhang F S. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Management (New York, N.Y.), 2016, 51: 239–244
CrossRef Google scholar
[93]
Kano J, Kobayashi E, Tongamp W, Miyagi S, Saito F. Non-thermal reduction of indium oxide and indium tin oxide by mechanochemical method. Journal of Alloys and Compounds, 2009, 484(1–2): 422–425
CrossRef Google scholar
[94]
Tan Q, Li J. Recycling metals from wastes: a novel application of mechanochemistry. Environmental Science & Technology, 2015, 49(10): 5849–5861
CrossRef Google scholar
[95]
Whitehead J A, Lawrance G A, McCluskey A. “Green” leaching: recyclable and selective leaching of gold-bearing ore in an ionic liquid. Green Chemistry, 2004, 6(7): 313–315
CrossRef Google scholar
[96]
Han D, Row K H. Recent applications of ionic liquids in separation technology. Molecules (Basel, Switzerland), 2010, 15(4): 2405–2426
CrossRef Google scholar
[97]
Fischer L, Falta T, Koellensperger G, Stojanovic A, Kogelnig D, Galanski M, Krachler R, Keppler B K, Hann S. Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Research, 2011, 45(15): 4601–4614
CrossRef Google scholar
[98]
Yang F, Kubota F, Baba Y, Kamiya N, Goto M. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Journal of Hazardous Materials, 2013, 254–255: 79–88
CrossRef Google scholar
[99]
Papaiconomou N, Lee J M, Salminen J, von Stosch M, Prausnitz J M. Selective extraction of copper, mercury, silver, and palladium ions from water using hydrophobic ionic liquids. Industrial & Engineering Chemistry Research, 2007, 47(15): 5080–5086
CrossRef Google scholar
[100]
Zeng X, Li J. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. Journal of Hazardous Materials, 2014, 271: 50–56
CrossRef Google scholar

Acknowledgements

This study was financially supported by the National Key Technology R&D Program of China (No. 2014BAC03B04).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11783-017-0963-1 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1463 KB)

Accesses

Citations

Detail

Sections
Recommended

/