Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance

Jing Gu, Hongtao Yu, Xie Quan, Shuo Chen

PDF(469 KB)
PDF(469 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 13. DOI: 10.1007/s11783-017-0957-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance

Author information +
History +

Highlights

SiMP/α-Fe2O3 improved photoeletrochemical stability of Si.

Optical absorption and photocurrent density of SiMP/α-Fe2O3 improved 2 and 4 times.

Enhanced photogenerated charge separation derived from built-in electric field.

Few papers with respect to the α-Fe2O3-covering-Si photocathode had been published.

Abstract

The spontaneous oxidation process of pristine silicon (Si) limits its application as photocatalyst or electrode in aqueous solution or moist air. Covering a protection layer on Si surface is an effective approach to overcome this disadvantage. In this paper, α-Fe2O3 is demonstrated to be an excellent alternative as a protection material. α-Fe2O3 layer was deposited around each p-type Si micropillar (SiMP) in well-ordered array by chemical bath deposition method. The diameter of SiMP was 5 mm and the thickness of α-Fe2O3 layer was about 20 nm. The photoeletrochemical stability of SiMP/α-Fe2O3 was proved by 10 circles cyclic voltammetry testing. Compared with SiMP, its optical absorption and photocurrent density improved 2 times and 4 times, respectively, and its onset potential for hydrogen evolution moved positively about 0.4 V. These improved performances could be ascribed to the enhanced photogenerated-charge-separation efficiency deriving from built-in electric field at the interface between Si and α-Fe2O3. The above results show an effective strategy to utilize Si material as photocatalyst or electrode in aqueous solution or moist air.

Graphical abstract

Keywords

Si / α-Fe2O3 / Photoelectrochemistry / Photogenerated charge separation

Cite this article

Download citation ▾
Jing Gu, Hongtao Yu, Xie Quan, Shuo Chen. Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance. Front. Environ. Sci. Eng., 2017, 11(6): 13 https://doi.org/10.1007/s11783-017-0957-z

References

[1]
Liu J, Cai H, Mei C, Wang M. Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Frontiers of Environmental Science & Engineering, 2015, 9(5): 905–911
CrossRef Google scholar
[2]
Liu Q, Wu F, Cao F, Chen L, Xie X, Wang W, Tian W, Li L. A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Research, 2015, 8(11): 3524–3534
CrossRef Google scholar
[3]
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
CrossRef Pubmed Google scholar
[4]
Lewis N S. An integrated, systems approach to the development of solar fuel generators. Interface, 2013, 22(2): 43–49
[5]
Tong G, Guan J, Zhang Q. Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. Materials Chemistry and Physics, 2011, 127(1): 371–378
CrossRef Google scholar
[6]
Murphy A B, Barnes P R F, Randeniya L K, Plumb I C, Grey I E, Horne M D, Glasscock J A. Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 2006, 31(14): 1999–2017
CrossRef Google scholar
[7]
Wang X, Peng K Q, Hu Y, Zhang F Q, Hu B, Li L, Wang M, Meng X M, Lee S T. Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Letters, 2014, 14(1): 18–23
CrossRef Pubmed Google scholar
[8]
Klahr B M, Hamann T W. Voltage dependent photocurrent of thin film hematite electrodes. Applied Physics Letters, 2011, 99(6): 063508
CrossRef Google scholar
[9]
Kay A, Cesar I, Grätzel M. New benchmark for water photooxidation by nanostructured a-Fe2O3 films. Journal of the American Chemical Society, 2006, 128(49): 15714–15721
CrossRef Pubmed Google scholar
[10]
Zhao H, Fu W, Yang H, Xu Y, Zhao W, Zhang Y, Chen H, Jing Q, Qi X, Cao J, Zhou X, Li Y. Synthesis and characterization of TiO2/Fe2O3 core–shell nanocomposition film and their photoelectrochemical property. Applied Surface Science, 2011, 257(21): 8778–8783
CrossRef Google scholar
[11]
Jiang C, Liu L, Crittenden J C. An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Frontiers of Environmental Science & Engineering, 2016, 10(4): 1–8
CrossRef Google scholar
[12]
Kazazis D, Guha S, Bojarczuk N A, Zaslavsky A, Kim H C. Substrate Fermi level effects in photocatalysis on oxides: properties of ultrathin TiO2/Si films. Applied Physics Letters, 2009, 95(6): 064103
CrossRef Google scholar
[13]
Yu H, Chen S, Quan X, Zhao H, Zhang Y. Silicon nanowire/TiO2 heterojunction arrays for effective photoelectrocatalysis under simulated solar light irradiation. Applied Catalysis B: Environmental, 2009, 90(1–2): 242–248
CrossRef Google scholar
[14]
Yoon K H, Shin C W, Kang D H. Photoelectrochemical conversion in a WO3 coated p-Si photoelectrode: effect of annealing temperature. Journal of Applied Physics, 1997, 81(10): 7024–7029
CrossRef Google scholar
[15]
Feng X, Qi X, Li J, Yang L, Qiu M, Yin J, Lu F, Zhong J. Preparation, structure and photo-catalytic performances of hybrid Bi2SiO5 modified Si nanowire arrays. Applied Surface Science, 2011, 257(13): 5571–5575
CrossRef Google scholar
[16]
Hodes G, Thompso L, DuBow J, Rajeshwar K. Heterojunction silicon/indium tin oxide photoelectrodes: development of stable systems in aqueous electrolytes and their applicability to solar energy conversion and storage. Journal of the American Chemical Society, 1983, 105(3): 324–330
CrossRef Google scholar
[17]
Tainboli A C, Malhotra M, Kimball G M, Turner-Evans D B, Atwater H A. Confonnal GaP layers on Si wire arrays for solar energy applications. Applied Physics Letters, 2010, 97(22): 221914
CrossRef Google scholar
[18]
Kim M S, Yim K G, Kim S, Main G, Leem J. White light emission from nano-fibrous ZnO thin films/porous silicon nanocomposite. Journal of Sol-Gel Science and Technology, 2011, 59(2): 364–370
CrossRef Google scholar
[19]
Hosono E, Fujihara S, Honma I, Ichihara M, Zhou H. Fabrication of nano/micro hierarchical Fe2O3/Ni micrometer-wire structure and characteristics for high rate Li rechargeable battery. Journal of the Electrochemical Society, 2006, 153(7): A1273–A1278
CrossRef Google scholar
[20]
Künle M, Janz S, Nickel K G, Heidt A, Luysberg M, Eibl O. Annealing of nm-thin Si1−xCx/SiC multilayers. Solar Energy Materials and Solar Cells, 2013, 115: 11–20
CrossRef Google scholar
[21]
Su C, Li W, Liu X, Huang X, Yu X. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue. Frontiers of Environmental Science & Engineering, 2016, 10(1): 37–45
CrossRef Google scholar
[22]
Wang Y, Cao J, Wang S, Guo X, Zhang J, Xia H, Zhang S, Wu S. Facile synthesis of porous a-Fe2O3 nanorods and their application in ethanol sensors. Journal of Physical Chemistry C, 2008, 112(46): 17804–17808
CrossRef Google scholar
[23]
Ke X, Xu L, Zeng C, Zhang L, Xu N. Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine. Microporous and Mesoporous Materials, 2007, 106(1): 68–75
CrossRef Google scholar
[24]
Hu X, Yu J C, Gong J, Li Q, Li G. a-Fe2O3 Nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Advanced Materials, 2007, 19(17): 2324–2329
CrossRef Google scholar
[25]
Zhang S, Xu W, Zeng M, Li J, Xu J, Wang X. Hierarchically grown CdS/a-Fe2O3 heterojunction nanocomposites with enhanced visible-light-driven photocatalytic performance. Dalton Transactions (Cambridge, England), 2013, 42(37): 13417–13424
CrossRef Pubmed Google scholar
[26]
Pendlebury S R, Barroso M, Cowan A J, Sivula K, Tang J, Grätzel M, Klug D, Durrant J R. Dynamics of photogenerated holes in nanocrystalline a-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chemical Communications, 2011, 47(2): 716–718
CrossRef Pubmed Google scholar
[27]
Zeng Q, Bai J, Li J, Xia L, Huang K, Li X, Zhou B. A novel in situ preparation method for nanostructured a-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(8): 4345–4353
CrossRef Google scholar
[28]
Lu N, Quan X, Li J, Chen S, Yu H, Chen G. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. Journal of Physical Chemistry C, 2007, 111(32): 11836–11842
CrossRef Google scholar
[29]
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278
CrossRef Pubmed Google scholar
[30]
Sze S M, Ng K K. Physics of Semiconductor Devices. New York: John Wiley & Sons, 2006
[31]
F01 Committee. Practice for Conversion Between Resistivity and Dopant Density for Boron-Doped, Phosphorus-Doped, and Arsenic-Doped Silicon. Technical Representative, ASTM International, 1999, Available online at http://www.astm.org/Standards
[32]
Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85(3–4): 543–556
CrossRef Google scholar
[33]
George C, Beeldens A, Barmpas F, Doussin J, Manganelli G, Herrmann H, Kleffmann J, Mellouki A. Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science & Engineering, 2016, 10(5): 1–11
CrossRef Google scholar

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 21590813), the Programme of Introducing Talents of Discipline to Universities (B13012) and the China Scholarship Council.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer–Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(469 KB)

Accesses

Citations

Detail

Sections
Recommended

/