Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance

Jing Gu , Hongtao Yu , Xie Quan , Shuo Chen

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 13

PDF (469KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 13 DOI: 10.1007/s11783-017-0957-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance

Author information +
History +
PDF (469KB)

Abstract

SiMP/α-Fe2O3 improved photoeletrochemical stability of Si.

Optical absorption and photocurrent density of SiMP/α-Fe2O3 improved 2 and 4 times.

Enhanced photogenerated charge separation derived from built-in electric field.

Few papers with respect to the α-Fe2O3-covering-Si photocathode had been published.

The spontaneous oxidation process of pristine silicon (Si) limits its application as photocatalyst or electrode in aqueous solution or moist air. Covering a protection layer on Si surface is an effective approach to overcome this disadvantage. In this paper, α-Fe2O3 is demonstrated to be an excellent alternative as a protection material. α-Fe2O3 layer was deposited around each p-type Si micropillar (SiMP) in well-ordered array by chemical bath deposition method. The diameter of SiMP was 5 mm and the thickness of α-Fe2O3 layer was about 20 nm. The photoeletrochemical stability of SiMP/α-Fe2O3 was proved by 10 circles cyclic voltammetry testing. Compared with SiMP, its optical absorption and photocurrent density improved 2 times and 4 times, respectively, and its onset potential for hydrogen evolution moved positively about 0.4 V. These improved performances could be ascribed to the enhanced photogenerated-charge-separation efficiency deriving from built-in electric field at the interface between Si and α-Fe2O3. The above results show an effective strategy to utilize Si material as photocatalyst or electrode in aqueous solution or moist air.

Graphical abstract

Keywords

Si / α-Fe 2O 3 / Photoelectrochemistry / Photogenerated charge separation

Cite this article

Download citation ▾
Jing Gu, Hongtao Yu, Xie Quan, Shuo Chen. Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance. Front. Environ. Sci. Eng., 2017, 11(6): 13 DOI:10.1007/s11783-017-0957-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu JCai HMei CWang M. Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Frontiers of Environmental Science & Engineering20159(5): 905–911

[2]

Liu QWu FCao FChen LXie XWang WTian WLi L. A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Research20158(11): 3524–3534

[3]

Walter M GWarren E LMcKone J RBoettcher S WMi QSantori E ALewis N S. Solar water splitting cells. Chemical Reviews2010110(11): 6446–6473

[4]

Lewis N S. An integrated, systems approach to the development of solar fuel generators. Interface201322(2): 43–49

[5]

Tong GGuan JZhang Q. Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. Materials Chemistry and Physics2011127(1): 371–378

[6]

Murphy A BBarnes P R FRandeniya L KPlumb I CGrey I EHorne M DGlasscock J A. Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy200631(14): 1999–2017

[7]

Wang XPeng K QHu YZhang F QHu BLi LWang MMeng X MLee S T. Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Letters201414(1): 18–23

[8]

Klahr B MHamann T W. Voltage dependent photocurrent of thin film hematite electrodes. Applied Physics Letters201199(6): 063508

[9]

Kay ACesar IGrätzel M. New benchmark for water photooxidation by nanostructured a-Fe2O3 films. Journal of the American Chemical Society2006128(49): 15714–15721

[10]

Zhao HFu WYang HXu YZhao WZhang YChen HJing QQi XCao JZhou XLi Y. Synthesis and characterization of TiO2/Fe2O3 core–shell nanocomposition film and their photoelectrochemical property. Applied Surface Science2011257(21): 8778–8783

[11]

Jiang CLiu LCrittenden J C. An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Frontiers of Environmental Science & Engineering201610(4): 1–8

[12]

Kazazis DGuha SBojarczuk N AZaslavsky AKim H C. Substrate Fermi level effects in photocatalysis on oxides: properties of ultrathin TiO2/Si films. Applied Physics Letters200995(6): 064103

[13]

Yu HChen SQuan XZhao HZhang Y. Silicon nanowire/TiO2 heterojunction arrays for effective photoelectrocatalysis under simulated solar light irradiation. Applied Catalysis B: Environmental200990(1–2): 242–248

[14]

Yoon K HShin C WKang D H. Photoelectrochemical conversion in a WO3 coated p-Si photoelectrode: effect of annealing temperature. Journal of Applied Physics199781(10): 7024–7029

[15]

Feng XQi XLi JYang LQiu MYin JLu FZhong J. Preparation, structure and photo-catalytic performances of hybrid Bi2SiO5 modified Si nanowire arrays. Applied Surface Science2011257(13): 5571–5575

[16]

Hodes GThompso LDuBow JRajeshwar K. Heterojunction silicon/indium tin oxide photoelectrodes: development of stable systems in aqueous electrolytes and their applicability to solar energy conversion and storage. Journal of the American Chemical Society1983105(3): 324–330

[17]

Tainboli A CMalhotra MKimball G MTurner-Evans D BAtwater H A. Confonnal GaP layers on Si wire arrays for solar energy applications. Applied Physics Letters201097(22): 221914

[18]

Kim M SYim K GKim SMain GLeem J. White light emission from nano-fibrous ZnO thin films/porous silicon nanocomposite. Journal of Sol-Gel Science and Technology201159(2): 364–370

[19]

Hosono EFujihara SHonma IIchihara MZhou H. Fabrication of nano/micro hierarchical Fe2O3/Ni micrometer-wire structure and characteristics for high rate Li rechargeable battery. Journal of the Electrochemical Society2006153(7): A1273–A1278

[20]

Künle MJanz SNickel K GHeidt ALuysberg MEibl O. Annealing of nm-thin Si1−xCx/SiC multilayers. Solar Energy Materials and Solar Cells2013115: 11–20

[21]

Su CLi WLiu XHuang XYu X. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue. Frontiers of Environmental Science & Engineering201610(1): 37–45

[22]

Wang YCao JWang SGuo XZhang JXia HZhang SWu S. Facile synthesis of porous a-Fe2O3 nanorods and their application in ethanol sensors. Journal of Physical Chemistry C2008112(46): 17804–17808

[23]

Ke XXu LZeng CZhang LXu N. Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine. Microporous and Mesoporous Materials2007106(1): 68–75

[24]

Hu XYu J CGong JLi QLi G. a-Fe2O3 Nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Advanced Materials200719(17): 2324–2329

[25]

Zhang SXu WZeng MLi JXu JWang X. Hierarchically grown CdS/a-Fe2O3 heterojunction nanocomposites with enhanced visible-light-driven photocatalytic performance. Dalton Transactions (Cambridge, England)201342(37): 13417–13424

[26]

Pendlebury S RBarroso MCowan A JSivula KTang JGrätzel MKlug DDurrant J R. Dynamics of photogenerated holes in nanocrystalline a-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chemical Communications201147(2): 716–718

[27]

Zeng QBai JLi JXia LHuang KLi XZhou B. A novel in situ preparation method for nanostructured a-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. Journal of Materials Chemistry. A, Materials for Energy and Sustainability20153(8): 4345–4353

[28]

Lu NQuan XLi JChen SYu HChen G. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. Journal of Physical Chemistry C2007111(32): 11836–11842

[29]

Kudo AMiseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews200938(1): 253–278

[30]

Sze S MNg K K. Physics of Semiconductor Devices. New York: John Wiley & Sons, 2006

[31]

F01 Committee. Practice for Conversion Between Resistivity and Dopant Density for Boron-Doped, Phosphorus-Doped, and Arsenic-Doped Silicon. Technical Representative, ASTM International1999, Available online at 

[32]

Xu YSchoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist200085(3–4): 543–556

[33]

George CBeeldens ABarmpas FDoussin JManganelli GHerrmann HKleffmann JMellouki A. Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science & Engineering201610(5): 1–11

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (469KB)

1999

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/