Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole

Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann

PDF(395 KB)
PDF(395 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 8. DOI: 10.1007/s11783-017-0953-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole

Author information +
History +

Highlights

Intimately coupling UV photolysis accelerated benzotriazone (BTA) biodegradation.

Photolysis of BTA generated four products: AP, PHZ, FA, and MA.

FA and MA accelerated BTA biodegradation, as they produced internal electron donor.

AP and PHZ slowed BTA biodegradation, as they competed for internal electron donor.

AP and PHZ did not accumulate during the intimately coupling process.

Abstract

Benzotriazole (BTA) is an emerging contaminant that also is a recalcitrant compound. Sequential and intimate coupling of UV-photolysis with biodegradation were investigated for their impacts on BTA removal and mineralization in aerobic batch experiments. Special attention was given to the role of its main photolytic products, which were aminophenol (AP), formic acid (FA), maleic acid (MA), and phenazine (PHZ). Experiments with sequential coupling showed that BTA biodegradation was accelerated by photolytic pretreatment up to 9 min, but BTA biodegradation was slowed with longer photolysis. FA and MA accelerated BTA biodegradation by being labile electron-donor substrates, but AP and PHZ slowed the rate because of inhibition due to their competition for intracellular electron donor. Because more AP and PHZ accumulated with increasing photolysis time, their inhibitory effects began to dominate with longer photolysis time. Intimately coupling photolysis with biodegradation relieved the inhibition effect, because AP and PHZ were quickly biodegraded and did not accumulate, which accentuated the beneficial effect of FA and MA.

Graphical abstract

Keywords

Benzotriazole / Photolysis / Biodegradation / Inhibition / Electron donor

Cite this article

Download citation ▾
Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole. Front. Environ. Sci. Eng., 2017, 11(6): 8 https://doi.org/10.1007/s11783-017-0953-3

References

[1]
Sui Q, Huang J, Lu S, Deng S, Wang B, Zhao W, Qiu Z, Yu G. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Frontiers of Environmental Science & Engineering, 2014, 8(1): 62–68
CrossRef Google scholar
[2]
Zhao W, Guo Y, Lu S, Yan P, Sui Q. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Frontiers of Environmental Science & Engineering, 2016, 10(6): 2
CrossRef Google scholar
[3]
Cancilla D A, Martinez J, van Aggelen G C. Detection of aircraft deicing/antiicing fluid additives in a perched water monitoring well at an international airport. Environmental Science & Technology, 1998, 32(23): 3834–3835
CrossRef Google scholar
[4]
Cancilla D A, Baird J C, Geis S W, Corsi S R. Studies of the environmental fate and effect of aircraft deicing fluids: detection of 5-methyl-1H-benzotriazole in the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 2003, 22(1): 134–140
CrossRef Pubmed Google scholar
[5]
Orsi D, Giannini G, Gagliardi L, Porrà R, Berri S, Bolasco A, Carpani I, Tonelli D.Simple extraction and HPLC determination of UV-A and UV-B filters in sunscreen products. Chromatographia, 2006, 64(9–10): 509–515 
CrossRef Google scholar
[6]
Hart D S, Davis L C, Erickson L E, Callender T M. Sorption and partitioning parameters of benzotriazole compounds. Microchemical Journal, 2004, 77(1): 9–17
CrossRef Google scholar
[7]
Kadar E, Dashfield S, Hutchinson T H. Developmental toxicity of benzotriazole in the protochordate Ciona intestinalis (Chordata, Ascidiae). Analytical and Bioanalytical Chemistry, 2010, 396(2): 641–647160;
CrossRef Pubmed Google scholar
[8]
Seeland A, Oetken M, Kiss A, Fries E, Oehlmann J. Acute and chronic toxicity of benzotriazoles to aquatic organisms. Environmental Science and Pollution Research International, 2012, 19(5): 1781–1790
CrossRef Pubmed Google scholar
[9]
Liu Y S, Ying G G, Shareef A, Kookana R S. Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Research, 2011, 45(16): 5005–5014
CrossRef Pubmed Google scholar
[10]
Huntscha S, Hofstetter T B, Schymanski E L, Spahr S, Hollender J. Biotransformation of benzotriazoles: insights from transformation product identification and compound-specific isotope analysis. Environmental Science & Technology, 2014, 48(8): 4435–4443160;
CrossRef Pubmed Google scholar
[11]
Dahlen E P, Rittmann B E. Two-tank suspended growth process for accelerating the detoxification kinetics of hydrocarbons requiring initial monooxygenation reactions. Biodegradation, 2002, 13(2): 101–116
CrossRef Pubmed Google scholar
[12]
Zhang Y, Chang L, Yan N, Tang Y, Liu R, Rittmann B E. UV photolysis for accelerating pyridine biodegradation.  Environmental Science & Technology, 2014, 48(1): 649–655
CrossRef Pubmed Google scholar
[13]
Tang Y, Zhang Y, Yan N, Liu R, Rittmann B E. The role of electron donors generated from UV photolysis for accelerating pyridine biodegradation. Biotechnology and Bioengineering, 2015, 112(9): 1792–1800
CrossRef Pubmed Google scholar
[14]
Bai Q, Yang L, Li R, Chen B, Zhang L, Zhang Y, Rittmann B E. Accelerating quinoline biodegradation and oxidation with endogenous electron donors. Environmental Science & Technology, 2015, 49(19): 11536–11542160;
CrossRef Pubmed Google scholar
[15]
Kan E, Koh C I, Lee K, Kang J. Decomposition of aqueous chlorinated contaminants by UV irradiation with H2O2. Frontiers of Environmental Science & Engineering, 2015, 9(3): 429–435
CrossRef Google scholar
[16]
Xiong X, Sun B, Zhang J, Gao N, Shen J, Li J, Guan X. Activating persulfate by Fe0 coupling with weak magnetic field: pperformance and mechanism. Water Research, 2014, 62(0): 53–62
CrossRef Pubmed Google scholar
[17]
Mawhinney D B, Vanderford B J, Snyder S A. Transformation of 1H-benzotriazole by ozone in aqueous solution. Environmental Science & Technology, 2012, 46(13): 7102–7111
CrossRef Pubmed Google scholar
[18]
Ding Y, Yang C, Zhu L, Zhang J. Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. Journal of Hazardous Materials, 2010, 175(1–3): 96–103
CrossRef Pubmed Google scholar
[19]
Suryaman D, Hasegawa K. Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water. Journal of Hazardous Materials, 2010, 183(1–3): 490–496
CrossRef Pubmed Google scholar
[20]
Chan C Y, Tao S, Dawson R, Wong P K. Treatment of atrazine by integrating photocatalytic and biological processes. Environmental pollution (Barking, Essex: 1987), 2004, 131(1): 45–54160;
CrossRef Pubmed Google scholar
[21]
Marsolek M D, Kirisits M J, Gray K A, Rittmann B E. Coupled photocatalytic-biodegradation of 2,4,5-trichlorophenol: effects of photolytic and photocatalytic effluent composition on bioreactor process performance, community diversity, and resistance and resilience to perturbation. Water Research, 2014, 50(3): 59–69160;
CrossRef Pubmed Google scholar
[22]
Guieysse B, Viklund G. Sequential UV-biological degradation of polycyclic aromatic hydrocarbons in two-phases partitioning bioreactors. Chemosphere, 2005, 59(3): 369–376
CrossRef Pubmed Google scholar
[23]
Tamer E, Hamid Z, Aly A M, Ossama T, Bo M, Benoit G. Sequential UV-biological degradation of chlorophenols. Chemosphere, 2006, 63(2): 277–284
CrossRef Pubmed Google scholar
[24]
Manilal V B, Haridas A, Alexander R, Surender G D. Photocatalytic treatment of toxic organics in wastewater: toxicity of photodegradation products. Water Research, 1992, 26(8): 1035–1038
CrossRef Google scholar
[25]
Yang L, Zhang Y, Bai Q, Yan N, Xu H, Rittmann B E. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation. Journal of Hazardous Materials, 2015, 287(0): 252–258
CrossRef Pubmed Google scholar
[26]
Svenson A, Hynning P Å. Increased aquatic toxicity following photolytic conversion of an organochlorine pollutant. Chemosphere, 1997, 34(8): 1685–1692
CrossRef Google scholar
[27]
Marsolek M D, Torres C I, Hausner M, Rittmann B E. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor. Biotechnology and Bioengineering, 2008, 101(1): 83–92
CrossRef Pubmed Google scholar
[28]
Zhang Y, Sun X, Chen L, Rittmann B E. Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization. Biodegradation, 2012, 23(1): 189–198
CrossRef Pubmed Google scholar
[29]
Zhang Y, Yan R, Zou Z, Wang J, Rittmann B E. Improved nitrogen removal in dual-contaminated surface water by photocatalysis. Frontiers of Environmental Science & Engineering, 2012, 6(3): 428–436
CrossRef Google scholar
[30]
Zhang Y, Wang L, Rittmann B E. Integrated photocatalytic-biological reactor for accelerated phenol mineralization. Applied Microbiology and Biotechnology, 2010, 86(6): 1977–1985
CrossRef Pubmed Google scholar
[31]
Benitez F J, Acero J L, Real F J, Roldan G, Rodriguez E. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways. Water Research, 2013, 47(2): 870–880
CrossRef Pubmed Google scholar
[32]
Xu J, Li L, Guo C, Zhang Y, Wang S. Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation. Chemical Engineering Journal, 2013, 221(0): 230–237
CrossRef Google scholar
[33]
He Z, Spain J C. Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway). Archives of Microbiology, 1999, 171(5): 309–316160;
CrossRef Pubmed Google scholar
[34]
Willumsen P A, Johansen J E, Karlson U, Hansen B M. Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria. Applied Microbiology and Biotechnology, 2005, 67(3): 420–428160;
CrossRef Pubmed Google scholar

Acknowledgements

The authors acknowledge the financial support of the ability construction project of local Colleges and Universities in Shanghai (16070503000), Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (16K10ESPCT), Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development (A-9103-15-065004), and the United States National Science Foundation (0651794).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11783-017-0953-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(395 KB)

Accesses

Citations

Detail

Sections
Recommended

/