Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole

Shunan Shan , Yuting Zhang , Yining Zhang , Lanjun Hui , Wen Shi , Yongming Zhang , Bruce E. Rittmann

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 8

PDF (395KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 8 DOI: 10.1007/s11783-017-0953-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole

Author information +
History +
PDF (395KB)

Abstract

Intimately coupling UV photolysis accelerated benzotriazone (BTA) biodegradation.

Photolysis of BTA generated four products: AP, PHZ, FA, and MA.

FA and MA accelerated BTA biodegradation, as they produced internal electron donor.

AP and PHZ slowed BTA biodegradation, as they competed for internal electron donor.

AP and PHZ did not accumulate during the intimately coupling process.

Benzotriazole (BTA) is an emerging contaminant that also is a recalcitrant compound. Sequential and intimate coupling of UV-photolysis with biodegradation were investigated for their impacts on BTA removal and mineralization in aerobic batch experiments. Special attention was given to the role of its main photolytic products, which were aminophenol (AP), formic acid (FA), maleic acid (MA), and phenazine (PHZ). Experiments with sequential coupling showed that BTA biodegradation was accelerated by photolytic pretreatment up to 9 min, but BTA biodegradation was slowed with longer photolysis. FA and MA accelerated BTA biodegradation by being labile electron-donor substrates, but AP and PHZ slowed the rate because of inhibition due to their competition for intracellular electron donor. Because more AP and PHZ accumulated with increasing photolysis time, their inhibitory effects began to dominate with longer photolysis time. Intimately coupling photolysis with biodegradation relieved the inhibition effect, because AP and PHZ were quickly biodegraded and did not accumulate, which accentuated the beneficial effect of FA and MA.

Graphical abstract

Keywords

Benzotriazole / Photolysis / Biodegradation / Inhibition / Electron donor

Cite this article

Download citation ▾
Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole. Front. Environ. Sci. Eng., 2017, 11(6): 8 DOI:10.1007/s11783-017-0953-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sui QHuang JLu SDeng SWang BZhao WQiu ZYu G. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Frontiers of Environmental Science & Engineering20148(1): 62–68

[2]

Zhao WGuo YLu SYan PSui Q. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Frontiers of Environmental Science & Engineering201610(6): 2

[3]

Cancilla D AMartinez Jvan Aggelen G C. Detection of aircraft deicing/antiicing fluid additives in a perched water monitoring well at an international airport. Environmental Science & Technology199832(23): 3834–3835

[4]

Cancilla D ABaird J CGeis S WCorsi S R. Studies of the environmental fate and effect of aircraft deicing fluids: detection of 5-methyl-1H-benzotriazole in the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry200322(1): 134–140

[5]

Orsi DGiannini GGagliardi LPorrà RBerri SBolasco ACarpani ITonelli D.Simple extraction and HPLC determination of UV-A and UV-B filters in sunscreen products. Chromatographia200664(9–10): 509–515 

[6]

Hart D SDavis L CErickson L ECallender T M. Sorption and partitioning parameters of benzotriazole compounds. Microchemical Journal200477(1): 9–17

[7]

Kadar EDashfield SHutchinson T H. Developmental toxicity of benzotriazole in the protochordate Ciona intestinalis (Chordata, Ascidiae). Analytical and Bioanalytical Chemistry2010396(2): 641–647160;

[8]

Seeland AOetken MKiss AFries EOehlmann J. Acute and chronic toxicity of benzotriazoles to aquatic organisms. Environmental Science and Pollution Research International201219(5): 1781–1790

[9]

Liu Y SYing G GShareef AKookana R S. Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Research201145(16): 5005–5014

[10]

Huntscha SHofstetter T BSchymanski E LSpahr SHollender J. Biotransformation of benzotriazoles: insights from transformation product identification and compound-specific isotope analysis. Environmental Science & Technology201448(8): 4435–4443160;

[11]

Dahlen E PRittmann B E. Two-tank suspended growth process for accelerating the detoxification kinetics of hydrocarbons requiring initial monooxygenation reactions. Biodegradation200213(2): 101–116

[12]

Zhang YChang LYan NTang YLiu RRittmann B E. UV photolysis for accelerating pyridine biodegradation.  Environmental Science & Technology201448(1): 649–655

[13]

Tang YZhang YYan NLiu RRittmann B E. The role of electron donors generated from UV photolysis for accelerating pyridine biodegradation. Biotechnology and Bioengineering2015112(9): 1792–1800

[14]

Bai QYang LLi RChen BZhang LZhang YRittmann B E. Accelerating quinoline biodegradation and oxidation with endogenous electron donors. Environmental Science & Technology201549(19): 11536–11542160;

[15]

Kan EKoh C ILee KKang J. Decomposition of aqueous chlorinated contaminants by UV irradiation with H2O2. Frontiers of Environmental Science & Engineering20159(3): 429–435

[16]

Xiong XSun BZhang JGao NShen JLi JGuan X. Activating persulfate by Fe0 coupling with weak magnetic field: pperformance and mechanism. Water Research201462(0): 53–62

[17]

Mawhinney D BVanderford B JSnyder S A. Transformation of 1H-benzotriazole by ozone in aqueous solution. Environmental Science & Technology201246(13): 7102–7111

[18]

Ding YYang CZhu LZhang J. Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. Journal of Hazardous Materials2010175(1–3): 96–103

[19]

Suryaman DHasegawa K. Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water. Journal of Hazardous Materials2010183(1–3): 490–496

[20]

Chan C YTao SDawson RWong P K. Treatment of atrazine by integrating photocatalytic and biological processes. Environmental pollution (Barking, Essex: 1987)2004131(1): 45–54160;

[21]

Marsolek M DKirisits M JGray K ARittmann B E. Coupled photocatalytic-biodegradation of 2,4,5-trichlorophenol: effects of photolytic and photocatalytic effluent composition on bioreactor process performance, community diversity, and resistance and resilience to perturbation. Water Research201450(3): 59–69160;

[22]

Guieysse BViklund G. Sequential UV-biological degradation of polycyclic aromatic hydrocarbons in two-phases partitioning bioreactors. Chemosphere200559(3): 369–376

[23]

Tamer EHamid ZAly A MOssama TBo MBenoit G. Sequential UV-biological degradation of chlorophenols. Chemosphere200663(2): 277–284

[24]

Manilal V BHaridas AAlexander RSurender G D. Photocatalytic treatment of toxic organics in wastewater: toxicity of photodegradation products. Water Research199226(8): 1035–1038

[25]

Yang LZhang YBai QYan NXu HRittmann B E. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation. Journal of Hazardous Materials2015287(0): 252–258

[26]

Svenson AHynning P Å. Increased aquatic toxicity following photolytic conversion of an organochlorine pollutant. Chemosphere199734(8): 1685–1692

[27]

Marsolek M DTorres C IHausner MRittmann B E. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor. Biotechnology and Bioengineering2008101(1): 83–92

[28]

Zhang YSun XChen LRittmann B E. Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization. Biodegradation201223(1): 189–198

[29]

Zhang YYan RZou ZWang JRittmann B E. Improved nitrogen removal in dual-contaminated surface water by photocatalysis. Frontiers of Environmental Science & Engineering20126(3): 428–436

[30]

Zhang YWang LRittmann B E. Integrated photocatalytic-biological reactor for accelerated phenol mineralization. Applied Microbiology and Biotechnology201086(6): 1977–1985

[31]

Benitez F JAcero J LReal F JRoldan GRodriguez E. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways. Water Research201347(2): 870–880

[32]

Xu JLi LGuo CZhang YWang S. Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation. Chemical Engineering Journal2013221(0): 230–237

[33]

He ZSpain J C. Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway). Archives of Microbiology1999171(5): 309–316160;

[34]

Willumsen P AJohansen J EKarlson UHansen B M. Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria. Applied Microbiology and Biotechnology200567(3): 420–428160;

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (395KB)

Supplementary files

FSE-17051-OF-SSN_suppl_1

1725

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/