Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium

Xiaorong Meng , Conghui Wang , Pan Zhou , Xiaoqiang Xin , Lei Wang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 9

PDF (298KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 9 DOI: 10.1007/s11783-017-0950-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium

Author information +
History +
PDF (298KB)

Abstract

The mass transfer of PIM to In(III) is of high efficiency.

The separation selectivity of In(III)/Cu(II) is related to the pH value and Cl concentration of the feed phase.

The mass transfer of In(III) is controlled by chemical interaction.

The stability of the membrane is improved by increasing the membrane thickness.

In the present paper, a polymer inclusion membrane (PIM) containing polyvinyl chloride (PVC), and bis-(2-ethylhexyl) phosphate (D2EHPA) which was used as extracting agent was used for the recovery of In(III) ions in hydrochloric acid medium. The effects of carrier concentration, feed phase pH, strip phase HCl concentration, temperature on the transport, and the membrane’s stability and thickness were examined. And the conditions for the selective separation of In(III) and Cu(II) were optimized. The results showed that the transport of In(III) across PIM was consistent with the first order kinetics equation, and also it was controlled by both the diffusion of the metal complex in the membrane and the chemical reaction at the interface of the boundary layers. The transport flux (J0) was inversely proportional to the membrane thickness, however, the transport stability improved as the membrane thickness increased. The transport flux of In(III) and Cu(II) was decreased by excessive acidity of feed phase and high concentration of Cl. The selectivity separation coefficient of In(III)/Cu(II) was up to 34.33 when the original concentration of both In(III) and Cu(II) was 80 mg·L−1 as well as the pH of the feed phase and the concentration of Cl in the adjusting context were0.6 and 0.5 mol·L−1, respectively. Within the range of pH= 1–3, the separation selectivity of In(III)/Cu(II) reached the peak in the case when the Cl concentration was 0.7 mol·L−1 .

Graphical abstract

Keywords

Polymer inclusion membrane / Selective transport / D2EHPA / In(III) / Cu(II)

Cite this article

Download citation ▾
Xiaorong Meng, Conghui Wang, Pan Zhou, Xiaoqiang Xin, Lei Wang. Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium. Front. Environ. Sci. Eng., 2017, 11(6): 9 DOI:10.1007/s11783-017-0950-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hines C JRoberts J LAndrews R NJackson M VDeddens J A. Use of and occupational exposure to indium in the United States. Journal of Occupational and Environmental Hygiene201310(12): 723–733

[2]

Alfantazi A MMoskalyk R R. Processing of indium: a review. Minerals Engineering200316(8): 687–694

[3]

Rahman M LSarkar S MYusoff M M. Efficient removal of heavy metals from electroplating wastewater using polymer ligands. Frontiers of Environmental Science & Engineering201610(2): 352–361

[4]

Ma DGao H. Reuse of heavy metal-accumulating cynondon dactylon in remediation of water contaminated by heavy metals. Frontiers of Environmental Science & Engineering20148(6): 952–959

[5]

Lee S KLee U H. Adsorption and desorption property of iminodiacetate resin (Lewatit® TP207) for indium recovery. Journal of Industrial and Engineering Chemistry201640: 23–25

[6]

Ju JLiu RHe ZLiu HZhang XQu J. Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion. Frontiers of Environmental Science & Engineering201610(3): 467–476

[7]

Sato TSato K. Liquid-liquid extraction of indium(III) from aqueous acid solutions by acid organophosphorus compounds. Hydrometallurgy199230(1–3): 367–383

[8]

Li XDeng ZLi CWei CLi MFan GRong H. Direct solvent extraction of indium from a zinc residue reductive leach solution by D2EHPA. Hydrometallurgy2015156: 1–5

[9]

Ruan JGuo YQiao Q. Recovery of indium from scrap TFT-LCDs by solvent extraction. Procedia Environmental Sciences201216: 545–551

[10]

Guerriero RMeregalli LZhang X. Indium recovery from sulphuric solutions by supported liquid membranes. Hydrometallurgy198820(1): 109–120

[11]

Fan SJia QSong NSu RLiao W. Synergistic extraction study of indium from chloride medium by mixtures of sec-nonylphenoxy acetic acid and trialkyl amine. Separation and Purification Technology201075(1): 76–80

[12]

Jayawardane B MCoo LCattrall R WKolev S D. The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II). Analytica Chimica Acta2013803: 106–112

[13]

Sasaki YMatsuo NOshima TBaba Y. Selective extraction of In(III), Ga(III) and Zn(II) using a novel extractant with phenylphosphinic acid. Chinese Journal of Chemical Engineering201624(2): 232–236

[14]

Zimmermann Y SNiewersch CLenz MKül Z ZCorvini P F XSchäffer AWintgens T. Recycling of indium from CIGS photovoltaic cells: potential of combining acid-resistant nanofiltration with liquid-liquid extraction. Environmental Science & Technology201448(22): 13412–13418

[15]

Kolev S DBaba YCattrall R WTasaki TPereira NPerera J MStevens G W. Solid phase extraction of zinc(II) using a PVC-based polymer inclusion membrane with di(2-ethylhexyl)phosphoric acid (D2EHPA) as the carrier. Talanta200978(3): 795–799

[16]

Sato T. The extraction of indium(III), lanthanum(III) and bismuth(III) from sulphuric acid solutions by di-(2-ethylhexyl)-phosphoric acid. Journal of Inorganic and Nuclear Chemistry197537(6): 1485–1488

[17]

Lupi CPilone D. In(III) hydrometallurgical recovery from secondary materials by solvent extraction. Journal of Environmental Chemical Engineering20142(1): 100–104

[18]

Zhang LWang YGuo XYuan ZZhao Z. Separation and preconcentration of trace indium(III) from environmental samples with nanometer-size titanium dioxide. Hydrometallurgy200995(1): 92–95

[19]

Hasegawa YShimada TNiitsu M. Solvent extraction of 3B group metal ions from hydrochloric acid with trioctylphosphine oxide. Journal of Inorganic and Nuclear Chemistry198042(10): 1487–1489

[20]

Wang DHu JLi YFu MLiu DChen Q. Evidence on the 2-nitrophenyl octyl ether (NPOE) facilitating copper(II) transport through polymer inclusion membranes. Journal of Membrane Science2016501: 228–235

[21]

Zhang YZhang T ALv GZhang GLiu YZhang W. Synergistic extraction of vanadium(IV) in sulfuric acid media using a mixture of D2EHPA and EHEHPA. Hydrometallurgy2016166: 87–93

[22]

Turgut H IEyupoglu VKumbasar R ASisman I. Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix. Separation & Purification2017175: 406–417

[23]

Eyupoglu VKumbasar R A. Selective and synergistic extraction of nickel from simulated Cr-Ni electroplating bath solutions using LIX 63 and D2EHPA as carriers. Separation Science and Technology201449(16): 2485–2494

[24]

de San Miguel E RAguilar J Cde Gyves J. Structural effects on metal ion migration across polymer inclusion membranes: dependence of transport profiles on nature of active plasticizer. Journal of Membrane Science2008307(1): 105–116

[25]

de San Miguel E RMonroy-Barreto MAguilar J COcampo A Lde Gyves J. Structural effects on metal ion migration across polymer inclusion membranes: dependence of membrane properties and transport profiles on the weight and volume fractions of the components. Journal of Membrane Science2011379(1): 416–425

[26]

Meng XWang LWang XTang W. Transport of phenol through polymer inclusion membrane with N,N-di (1-methylheptyl) acetamide as carriers from aqueous solution. Journal of Membrane Science2015493: 615–621

[27]

Kolev S DArgiropoulos GCattrall R WHamilton I CPaimin R. Mathematical modelling of membrane extraction of gold(III) from hydrochloric acid solutions. Journal of Membrane Science1997137(1–2): 261–269

[28]

Kavitha NPalanivelu K. Recovery of copper(II) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid as carrier from e-waste. Journal of Membrane Science2012415: 663–669

[29]

Tor AArslan GMuslu HCeliktas ACengeloglu YErsoz M. Facilitated transport of Cr(III) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid (DEHPA). Journal of Membrane Science2009329(1): 169–174

[30]

Kaya AOnac CAlpoguz H KYilmaz AAtar N. Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water. Chemical Engineering Journal2016283: 141–149

[31]

Rajewski JŁobodzin P. Abexperimental analysis of the transport mechanism of chromium(III) ions in the polymer inclusion membrane system stract. Problemy Eksploatacji2016

[32]

Konczyk JKozlowski CWalkowiak W. Removal of chromium(III) from acidic aqueous solution by polymer inclusion membranes with D2EHPA and Aliquat 336. Desalination2010263(1): 211–216

[33]

de Lourdes Ballinas MRodríguez de San Miguel Ede Jesús Rodríguez M TSilva OMuñoz Mde Gyves J. Arsenic(V) removal with polymer inclusion membranes from sulfuric acid media using DBBP as carrier. Environmental Science & Technology200438(3): 886–891

[34]

Salazar-Alvarez GBautista-Flores A Nde San Miguel E RMuhammed Mde Gyves J. Transport characterisation of a PIM system used for the extraction of Pb(II) using D2EHPA as carrier. Journal of Membrane Science2005250(1): 247–257

[35]

Venkateswaran PNavaneetha Gopalakrishnan APalanivelu K. Di(2-ethylhexyl)phosphoric acid-coconut oil supported liquid membrane for the separation of copper ions from copper plating wastewater. Journal of Environmental Sciences (China)200719(12): 1446–1453

[36]

Brooks R RLloyd P J. Influence of molecular structure on the liquid/liquid extraction of the chloro-complexes of gallium and indium with aliphatic ethers. Nature1961189(4762): 375–376

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (298KB)

2160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/