Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots

Ling-Li Li , Yin-Hua Cui , Jie-Jie Chen , Han-Qing Yu

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 7

PDF (3156KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 7 DOI: 10.1007/s11783-017-0948-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots

Author information +
History +
PDF (3156KB)

Abstract

CdSe QDs were synthesized with CdCl2, Na2SeO3 and bio-thiols under mild conditions.

Compared with L-cysteine, glutathione was superior for CdSe QDs formation.

Cd2+ binding capacity of glutathione contributed to the CdSe QDs formation.

Biological synthesis of quantum dots (QDs) as an environmental-friendly and facile preparation method has attracted increasing interests. However, it is difficult to distinguish the roles of bio-thiols in QDs synthesis process because of the complex nature in organisms. In this work, the CdSe QDs synthesis conditions in organisms were reconstructed by using a simplified in vitro approach to uncover the roles of two small bio-thiols in the QDs formation. CdSe QDs were synthesized with glutathione (GSH) and L-cysteine (Cys) respectively. Compared with Cys at the same molar concentration, the CdSe QDs synthesized by GSH had a larger and broader particle size distribution with improved optical properties and crystal structure. Furthermore, quantum chemical calculations indicate that the stronger Cd2+ binding capacity of GSH contributed a lot to the CdSe QDs formation despite of the greater capability Cys for selenite reduction. This work clearly demonstrates the different roles of small thiols in the Cd2+ stabilization in the environment and biomimetic QDs synthesis process.

Graphical abstract

Keywords

CdSe / Quantum dots (QDs) / Biomimetic synthesis / Bio-thiols / Glutathione (GSH) / Cysteine (Cys)

Cite this article

Download citation ▾
Ling-Li Li, Yin-Hua Cui, Jie-Jie Chen, Han-Qing Yu. Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots. Front. Environ. Sci. Eng., 2017, 11(6): 7 DOI:10.1007/s11783-017-0948-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. Journal of Physical Chemistry198690(12): 2555–2560

[2]

Shu TZhou Z MWang HLiu G HXiang PRong Y GHan H WZhao Y D. Efficient quantum dot-sensitized solar cell with tunable energy band CdSexS(1-x) quantum dots. Journal of Materials Chemistry201222(21): 10525–10529

[3]

Kuang HZhao YMa WXu L GWang L BXu C L. Recent developments in analytical applications of quantum dots. TrAC Trends in Analytical Chemistry201130(10): 1620–1636

[4]

Zrazhevskiy PSena MGao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews201039(11): 4326–4354

[5]

Zhang YClapp A. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors (Basel)201111(12): 11036–11055

[6]

Dameron C TReese R NMehra R KKortan A RCarroll P JSteigerwald M LBrus L EWinge D R. Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature1989338(6216): 596–597

[7]

Cui RLiu H HXie H YZhang Z LYang Y RPang D WXie Z XChen B BHu BShen P. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Advanced Functional Materials200919(15): 2359–2364

[8]

Park T JLee S YHeo N SSeo T S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie International Edition in English201049(39): 7019–7024

[9]

Li YCui RZhang PChen B BTian Z QLi LHu BPang D WXie Z X. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano20137(3): 2240–2248

[10]

Patsoukis NGeorgiou C D. Determination of the thiol redox state of organisms: new oxidative stress indicators. Analytical and Bioanalytical Chemistry2004378(7): 1783–1792

[11]

Hansen R ERoth DWinther J R. Quantifying the global cellular thiol-disulfide status. Proceedings of the National Academy of Sciences of the United States of America2009106(2): 422–427

[12]

Zhang JWang FHouse J DPage B, Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnology and Oceanography200449(6): 2276–2286 doi:10.4319/lo.2004.49.6.2276

[13]

Moingt MBressac MBélanger DAmyot M, Role of ultra-violet radiation, mercury and copper on the stability of dissolved glutathione in natural and artificial freshwater and saltwater. Chemosphere201080(11): 1314–1320 PMID:20598342 doi:10.1016/j.chemosphere.2010.06.041

[14]

Liu JYang TChen Q, Liu FWang B, Distribution and potential ecological risk of heavy metals in the typical eco-units of Haihe River Basin. Frontiers of Environmental Science & Engineering201610(1): 103–113 doi:10.1007/s11783-014-0686-5

[15]

Pérez-Donoso J MMonrás J PBravo DAguirre AQuest A FOsorio-Román I OAroca R FChasteen T GVásquez C C. Biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility. PLoS One20127(1): e30741

[16]

Shi YMa ZCui NLiu YHou XDu WLiu LGangsheng T. In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers. Nanoscale Research Letters20149(1): 121

[17]

Xue SZhao QWei LHui XMa XLin  Y.Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions. Frontiers of Environmental Science & Engineering20126(6): 784–796 doi:10.1007/s11783-012-0436-5

[18]

Williams A T RWinfield S A,Miller J N. Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst1983108(1290): 1067–1071 doi:10.1039/an9830801067

[19]

Delley B. Fast calculation of electrostatics in crystals and large molecules. Journal of Physical Chemistry1996100(15): 6107–6110

[20]

Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics2000113(18): 7756–7764

[21]

Perdew J PBurke KErnzerhof M. Generalized gradient approximation made simple. Physical Review Letters199677(18): 3865–3868

[22]

Klamt AJonas VBürger TLohrenz J C W. Refinement and parametrization of COSMO-RS. Journal of Physical Chemistry A1998102(26): 5074–5085

[23]

Klamt ASchuurmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry1993, 2(5): 799–805

[24]

Cui Y HLi L LZhou N QLiu J HHuang QWang H JTian JYu H Q. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme and Microbial Technology201695: 185–191

[25]

Ganther H E. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry197110(22): 4089–4098

[26]

Guo X TNi Z JLiao C YNan H YZhang YZhao W WWang W H. Fluorescence quenching of CdSe QDs on graphene. Applied Physics Letters2013103(20): 201909

[27]

Neto E S Fda Silva S WMorais P CVasilevskiy M IPereira-da-Silva M ADantas N O. Resonant raman scattering in CdSxSe1-x nanocrystals: effects of phonon confinement, composition, and elastic strain. Journal of Raman Spectroscopy: JRS201142(8): 1660–1669

[28]

Qian HQiu XLi LRen J. Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots. Journal of Physical Chemistry B2006110(18): 9034–9040

[29]

Zhang Y HZhang H SMa MGuo X FWang H. The influence of ligands on the preparation and optical properties of water-soluble CdTe QDs. Applied Surface Science2009255(9): 4747–4753

[30]

Mir I ADas KRawat KBohidar H B. Hot injection versus room temperature synthesis of CdSe QDs: a differential spectroscopic and bioanalyte sensing efficacy evaluation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects2016494: 162–169

[31]

Silva F OCarvalho M SMendonça RMacedo W A ABalzuweit KReiss PSchiavon M A. Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Research Letters20127(1): 536–538

[32]

Borovaya M NNaumenko A PMatvieieva N ABlume Y BYemets A I. Biosynthesis of luminescent CdS QDs using plant hairy root culture. Nanoscale Research Letters20149(1): 686

[33]

Gonçalves HMendonça CEsteves da Silva J C. PARAFAC analysis of the quenching of EEM of fluorescence of glutathione capped CdTe quantum dots by Pb(II). Journal of Fluorescence200919(1): 141–149

[34]

Santos CI L, Carvalho M S, Raphael E, Dantas C, Ferrari J L, Schiavon M A. Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe QDs. Materials Research201619(6): 1407–1416

[35]

Gennari FSharma V KPettine MCampanella LMillero F J. Reduction of selenite by cysteine in ionic media. Geochimica et Cosmochimica Acta2014124: 98–108

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3156KB)

2222

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/