Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor

Yulun Nie , Xike Tian , Zhaoxin Zhou , Yu-You Li

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 6

PDF (619KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 6 DOI: 10.1007/s11783-017-0947-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor

Author information +
History +
PDF (619KB)

Abstract

Efficient methane recovery was obtained when the F/M ratio was below 0.357.

AE was efficiently degraded and converted into CH 4 by anaerobic microbes.

Microbe could cope with the stress of AE by producing more EPS and SMP.

F/M ratio of 1.054 decrease the methane production potential significantly.

The methane production activity of sludge was inhibited at a higher AE dosage.

The effects of food to microorganism (F/M) ratio and alcohol ethoxylate (AE) dosage on the methane production potential were investigated in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor (SAnMBR). The fate of AE and its acute and/or chronic impact on the anaerobic microbes were also analyzed. The results indicated that AE had an inhibitory effect to methane production potential (lag-time depends on the AE dosage) and the negative effect attenuated subsequently and methane production could recover at F/M ratio of 0.088–0.357. VFA measurement proved that AE was degraded into small molecular organic acids and then converted into methane at lower F/M ratio (F/M<0.158). After long-term acclimation, anaerobic microbe could cope with the stress of AE by producing more EPS (extracellular polymeric substances) and SMP (soluble microbial products) due to its self-protection behavior and then enhance its tolerance ability. However, the methane production potential was considerably decreased when AE was present in wastewater at a higher F/M ratio of 1.054. Higher AE amount and F/M ratio may destroy the cell structure of microbe, which lead to the decrease of methane production activity of sludge and methane production potential.

Graphical abstract

Keywords

Anaerobic membrane bioreactor AnMBR / F/M ratio / Surfactant / Wastewater / Methane production / Influence

Cite this article

Download citation ▾
Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor. Front. Environ. Sci. Eng., 2017, 11(6): 6 DOI:10.1007/s11783-017-0947-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang ZOng S LNg H Y. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling. Water Research201145(2): 705–713

[2]

Smith A LSkerlos S JRaskin L. Anaerobic membrane bioreactor treatment of domestic wastewater at psychrophilic temperatures ranging from 15 °C to 3 °C. Environmental Science: Water Research & Technology20151: 56–64

[3]

Chen LGu YCao CZhang JNg J WTang C. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Research201450: 114–123

[4]

Smith A LSkerlos S JRaskin L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Research201347(4): 1655–1665

[5]

Mei X JWang Z WMiao YWu Z C. Recover energy from domestic wastewater using anaerobic membrane bioreactor: Operating parameters optimization and energy balance analysis. Energy201698: 146–154

[6]

Pan J MZhang R HEl-Mashad H MSun H WYing Y B. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. International Journal of Hydrogen Energy200833(23): 6968–6975

[7]

Liu YLiu H NCui LZhang K S. The ratio of food-to-microorganism (F/M) on membrane fouling of anaerobic membrane bioreactors treating low-strength wastewater. Desalination2012297: 97–103

[8]

Lobos JWisniewski CHeran MGrasmick A. Effects of starvation conditions on biomass behaviour for minimization of sludge production in membrane bioreactors. Water Science and Technology200551(6-7): 35–44

[9]

Wei C HHarb MAmy GHong P YLeiknes T. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment. Bioresource Technology2014166: 326–334

[10]

Gouveia JPlaza FGarralon GFdz-Polanco FPeña M. A novel configuration for an anaerobic submerged membrane bioreactor (AnSMBR). Long-term treatment of municipal wastewater under psychrophilic conditions. Bioresource Technology2015198: 510–519

[11]

Kunacheva CSoh Y N ATrzcinski A PStuckey D C. Soluble microbial products (SMPs) in the effluent from a submerged anaerobic membrane bioreactor (SAMBR) under different HRTs and transient loading conditions. Chemical Engineering Journal2017311: 72–81

[12]

Traverso-Soto J MLara-Martín P ALeón V MGonzález-Mazo E. Analysis of alcohol polyethoxylates and polyethylene glycols in marine sediments. Talanta2013110: 171–179

[13]

Traverso-Soto J MBrownawell B JGonzález-Mazo ELara-Martín P A. Partitioning of alcohol ethoxylates and polyethylene glycols in the marine environment: field samplings vs laboratory experiments. Science of the Total Environment2014490: 671–678

[14]

Morrall S WDunphy J CCano M LEvans AMcAvoy D CPrice B PEckhoff W S. Removal and environmental exposure of alcohol ethoxylates in US sewage treatment. Ecotoxicology and Environmental Safety200664(1): 3–13

[15]

Berna J LCassani GHager C DRehman NLópez ISchowanek DSteber JTaeger KWind T. Anaerobic biodegradation of surfactants—Scientific review. Tenside, Surfactants, Detergents200744(6): 312–347

[16]

Motteran FBraga J KSakamoto I KSilva E LVaresche M B A. Degradation of high concentrations of nonionic surfactant (linear alcohol ethoxylate) in an anaerobic fluidized bed reactor. Science of the Total Environment2014481: 121–128

[17]

Ferrara FFabietti FDelise MFunari E. Alkylphenols and alkylphenol ethoxylates contamination of crustaceans and fishes from the Adriatic Sea (Italy). Chemosphere200559(8): 1145–1150

[18]

Song MBielefeldt A R. Toxicity and inhibition of bacterial growth by series of alkylphenol polyethoxylate nonionic surfactants. Journal of Hazardous Materials2012219-220: 127–132

[19]

Puyol DSanz J LRodriguez J JMohedano A F. Inhibition of methanogenesis by chlorophenols: a kinetic approach. New Biotechnology201230(1): 51–61

[20]

Lu XZhen GLiu YHojo TEstrada A LLi Y Y. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion. Bioresource Technology2014169: 644–651

[21]

Cetecioglu ZInce BOrhon DInce O. Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity. Bioresource Technology2012114: 109–116

[22]

Motteran FBraga J KSakamoto I KSilva E LVaresche M B A. Methanogenic potential of an anaerobic sludge in the presence of anionic and nonionic surfactants. International Biodeterioration & Biodegradation201496: 198–204

[23]

Ho JSung S. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technology2010101(7): 2191–2196

[24]

Gouveia JPlaza FGarralon GFdz-Polanco FPeña M. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresource Technology2015185: 225–233

[25]

JSWA. Japanese standard methods of the examination of wastewater. Japan sewage works association, Tokyo (Japan)1997

[26]

Ross SOlivier J P. A new method for the determination of critical micelle concentrations of un-ionized associations colloids in aqueous or in non-aqueous solution. Journal of Chemical Physics195963(10): 1671–1674

[27]

Frølund BPalmgren RKeiding KNielsen P H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research199630(8): 1749–1758

[28]

Van der Marel PZwijnenburg AKemperman AWessling MTemmink HVan der Meer W. Influence of membrane properties on fouling in submerged membrane bioreactors. Journal of Membrane Science2010348(1-2): 66–74

[29]

Dreher T MMott H VLupo C DOswald A SClay S AStone J J. Effects of chlortetracycline amended feed on anaerobic sequencing batch reactor performance of swine manure digestion. Bioresource Technology2012125: 65–74

[30]

Ma JQuan XSi XWu Y. Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms. Bioresource Technology2013149: 346–352

[31]

Wu WDuan TSong HLi YYu AZhang LLi A. The effect of continuous Ni(II) exposure on the organic degradation and soluble microbial product (SMP) formation in two-phase anaerobic reactor. Journal of Environmental Sciences (China)201533: 78–87

[32]

Wang YQin JZhou SLin XYe LSong CYan Y. Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion. Water Research201573: 252–264

[33]

Aquino S FStuckey D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. Water Research200438(2): 255–266

[34]

Mei X JWang Z WZheng XHuang FMa J XTang J XWu Z C. Soluble microbial products in membrane bioreactors in the presence of ZnO nanoparticles. Journal of Membrane Science2014451: 169–176

[35]

Laspidou C SRittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research200236(11): 2711–2720

[36]

Garcia M TCampos ESánchez-Leal JRibosa I. Effect of linear alkylbenzene sulphonates (LAS) on the anaerobic digestion of sewage sludge. Water Research200640(15): 2958–2964

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (619KB)

Supplementary files

FSE-17041-OF-NYL_suppl_1

2871

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/